BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 07-02-2013, 09:44 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Structure determination of ?–helical membrane proteins by solution-state NMR: Emphasis on retinal proteins

Structure determination of ?–helical membrane proteins by solution-state NMR: Emphasis on retinal proteins

Publication date: Available online 2 July 2013
Source:Biochimica et Biophysica Acta (BBA) - Bioenergetics

Author(s): Antoine Gautier

The biochemical processes of living cells involve a numerous series of reactions that work with exceptional specificity and efficiency. The tight control of this intricate reaction network stems from the architecture of the proteins that drive the chemical reactions and mediate protein–protein interactions. Indeed, the structure of these proteins will determine both their function and interaction partners. A detailed understanding of the proximity and orientation of pivotal functional groups can reveal the molecular mechanistic basis for the activity of a protein. Together with X-ray crystallography and electron microscopy, NMR spectroscopy plays an important role in solving three-dimensional structures of proteins at atomic resolution. In the challenging field of membrane proteins, retinal-binding proteins are often employed as model systems and prototypes to develop biophysical techniques for the study of structural and functional mechanistic aspects. The recent determination of two 3D structures of seven-helical trans-membrane retinal proteins by solution-state NMR spectroscopy highlights the potential of solution NMR techniques in contributing to our understanding of membrane proteins. This review summarizes the multiple strategies available for expression of isotopically labeled membrane proteins. Different environments for mimicking lipid bilayers will be presented, along with the most important NMR methods and labeling schemes used to generate high-quality NMR spectra. The article concludes with an overview of types of conformational restraints used for generation of high-resolution structures of membrane proteins. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.







More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Advanced Solid-State NMR Approaches for Structure Determination of Membrane Proteins and Amyloid Fibrils.
Advanced Solid-State NMR Approaches for Structure Determination of Membrane Proteins and Amyloid Fibrils. Advanced Solid-State NMR Approaches for Structure Determination of Membrane Proteins and Amyloid Fibrils. Acc Chem Res. 2013 May 10; Authors: Tang M, Comellas G, Rienstra CM Abstract Solid-state NMR (SSNMR) spectroscopy has become an important technique for studying the biophysics and structure biology of proteins. This technique is especially useful for insoluble membrane proteins and amyloid fibrils, which are essential for...
nmrlearner Journal club 0 05-11-2013 10:26 PM
[NMR paper] DNA nanotubes for NMR structure determination of membrane proteins.
DNA nanotubes for NMR structure determination of membrane proteins. DNA nanotubes for NMR structure determination of membrane proteins. Nat Protoc. 2013 Apr;8(4):755-70 Authors: Bellot G, McClintock MA, Chou JJ, Shih WM Abstract Finding a way to determine the structures of integral membrane proteins using solution nuclear magnetic resonance (NMR) spectroscopy has proved to be challenging. A residual-dipolar-coupling–based refinement approach can be used to resolve the structure of membrane proteins up to 40 kDa in size, but to do this you...
nmrlearner Journal club 0 04-18-2013 10:12 PM
[NMR paper] DNA nanotubes for NMR structure determination of membrane proteins.
DNA nanotubes for NMR structure determination of membrane proteins. DNA nanotubes for NMR structure determination of membrane proteins. Nat Protoc. 2013 Mar 21;8(4):755-70 Authors: Bellot G, McClintock MA, Chou JJ, Shih WM Abstract Finding a way to determine the structures of integral membrane proteins using solution nuclear magnetic resonance (NMR) spectroscopy has proved to be challenging. A residual-dipolar-coupling-based refinement approach can be used to resolve the structure of membrane proteins up to 40 kDa in size, but to do this...
nmrlearner Journal club 0 03-23-2013 06:36 PM
[NMR paper] Solution NMR spectroscopy for the determination of structures of membrane proteins in a lipid environment.
Solution NMR spectroscopy for the determination of structures of membrane proteins in a lipid environment. Solution NMR spectroscopy for the determination of structures of membrane proteins in a lipid environment. Methods Mol Biol. 2013;974:389-413 Authors: Arora A Abstract Several recent advancements have transformed solution NMR spectroscopy into a competitive, elegant, and eminently viable technique for determining the solution structures of membrane proteins at the level of atomic resolution. Once a good level of cell-based or...
nmrlearner Journal club 0 02-14-2013 02:37 PM
Solution NMR studies of polytopic ?-helical membrane proteins.
Solution NMR studies of polytopic ?-helical membrane proteins. Solution NMR studies of polytopic ?-helical membrane proteins. Curr Opin Struct Biol. 2011 Jul 18; Authors: Nietlispach D, Gautier A NMR spectroscopy has established itself as one of the main techniques for the structural study of integral membrane proteins. Remarkably, over the last few years, substantial progress has been achieved in the structure determination of increasingly complex polytopical ?-helical membrane proteins, with their size approaching ~100kDa. Such advances are the...
nmrlearner Journal club 0 07-23-2011 08:54 AM
[NMR paper] How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli. Related Articles How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli. Chembiochem. 2005 Sep;6(9):1693-700 Authors: Lorch M, Faham S, Kaiser C, Weber I, Mason AJ, Bowie JU, Glaubitz C Several studies have demonstrated that it is viable to use microcrystalline preparations of water-soluble proteins as...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] NMR solution structure determination of membrane proteins reconstituted in detergent
NMR solution structure determination of membrane proteins reconstituted in detergent micelles. Related Articles NMR solution structure determination of membrane proteins reconstituted in detergent micelles. FEBS Lett. 2003 Nov 27;555(1):144-50 Authors: Fernández C, Wüthrich K As an alternative to X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy in solution can be used for three-dimensional structure determination of small membrane proteins, preferably proteins with beta-barrel fold. This paper reviews recent achievements as...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Structure determination of membrane proteins by NMR spectroscopy.
Structure determination of membrane proteins by NMR spectroscopy. Related Articles Structure determination of membrane proteins by NMR spectroscopy. Biochem Cell Biol. 2002;80(5):597-604 Authors: Opella SJ, Nevzorov A, Mesleb MF, Marassi FM Current strategies for determining the structures of membrane proteins in lipid environments by NMR spectroscopy rely on the anisotropy of nuclear spin interactions, which are experimentally accessible through experiments performed on weakly and completely aligned samples. Importantly, the anisotropy of...
nmrlearner Journal club 0 11-24-2010 08:49 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:14 PM.


Map