BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-24-2010, 10:01 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,700
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Structure of the coat protein in Pf1 bacteriophage determined by solid-state NMR spec

Structure of the coat protein in Pf1 bacteriophage determined by solid-state NMR spectroscopy.

Related Articles Structure of the coat protein in Pf1 bacteriophage determined by solid-state NMR spectroscopy.

J Mol Biol. 2004 Aug 13;341(3):869-79

Authors: Thiriot DS, Nevzorov AA, Zagyanskiy L, Wu CH, Opella SJ

The atomic resolution structure of Pf1 coat protein determined by solid-state NMR spectroscopy of magnetically aligned filamentous bacteriophage particles in solution is compared to the structures previously determined by X-ray fiber and neutron diffraction, the structure of its membrane-bound form, and the structure of fd coat protein. These structural comparisons provide insights into several biological properties, differences between class I and class II filamentous bacteriophages, and the assembly process. The six N-terminal amino acid residues adopt an unusual "double hook" conformation on the outside of the bacteriophage particle. The solid-state NMR results indicate that at 30 degrees C, some of the coat protein subunits assume a single, fully structured conformation, and some have a few mobile residues that provide a break between two helical segments, in agreement with structural models from X-ray fiber and neutron diffraction, respectively. The atomic resolution structure determined by solid-state NMR for residues 7-14 and 18-46, which excludes the N-terminal double hook and the break between the helical segments, but encompasses more than 80% of the backbone including the distinct kink at residue 29, agrees with that determined by X-ray fiber diffraction with an RMSD value of 2.0 A. The symmetry and distance constraints determined by X-ray fiber and neutron diffraction enable the construction of an accurate model of the bacteriophage particle from the coordinates of the coat protein monomers.

PMID: 15288792 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy
Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy Ivan V. Sergeyev, Loren A. Day, Amir Goldbourt and Ann E. McDermott http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja2043062/aop/images/medium/ja-2011-043062_0007.gif Journal of the American Chemical Society DOI: 10.1021/ja2043062 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/EeKgo5vg1K0
nmrlearner Journal club 0 11-30-2011 10:45 PM
Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy.
Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy. Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy. J Am Chem Soc. 2011 Aug 22; Authors: Sergeyev IV, Day LA, Goldbourt A, McDermott AE Abstract Solid state NMR spectra, including dynamic nuclear polarization enhanced 400 MHz spectra acquired at 100K, as well as non-DNP spectra at a variety of field strengths and...
nmrlearner Journal club 0 08-23-2011 04:03 PM
Consensus structure of Pf1 filamentous bacteriophage from X-ray fibre diffraction and solid-state NMR.
Consensus structure of Pf1 filamentous bacteriophage from X-ray fibre diffraction and solid-state NMR. Consensus structure of Pf1 filamentous bacteriophage from X-ray fibre diffraction and solid-state NMR. Eur Biophys J. 2011 Mar;40(3):221-34 Authors: Straus SK, Scott WR, Schwieters CD, Marvin DA Filamentous bacteriophages (filamentous bacterial viruses or Inovirus) are simple and well-characterised macromolecular assemblies that are widely used in molecular biology and biophysics, both as paradigms for studying basic biological questions and as...
nmrlearner Journal club 0 06-15-2011 01:15 PM
[NMR paper] Structure of the coat protein in fd filamentous bacteriophage particles determined by
Structure of the coat protein in fd filamentous bacteriophage particles determined by solid-state NMR spectroscopy. Related Articles Structure of the coat protein in fd filamentous bacteriophage particles determined by solid-state NMR spectroscopy. Proc Natl Acad Sci U S A. 2003 May 27;100(11):6458-63 Authors: Zeri AC, Mesleh MF, Nevzorov AA, Opella SJ The atomic resolution structure of fd coat protein determined by solid-state NMR spectroscopy of magnetically aligned filamentous bacteriophage particles differs from that previously determined...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscop
Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Related Articles Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature. 2002 Nov 7;420(6911):98-102 Authors: Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H The determination of a representative set of protein structures is a chief aim in structural genomics. Solid-state NMR may have a crucial role in structural investigations of those proteins that do not easily form crystals or are not...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Structure and dynamics of bacteriophage IKe major coat protein in MPG micelles by sol
Structure and dynamics of bacteriophage IKe major coat protein in MPG micelles by solution NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Structure and dynamics of bacteriophage IKe major coat protein in MPG micelles by solution NMR. Biochemistry. 1996 Apr 23;35(16):5145-57 Authors: Williams KA, Farrow NA, Deber CM, Kay LE The structure and dynamics of the 53-residue filamentous bacteriophage IKe major coat protein in fully protonated myristoyllysophosphatidylglycerol (MPG)...
nmrlearner Journal club 0 08-22-2010 02:27 PM
[NMR paper] NMR studies of the major coat protein of bacteriophage M13. Structural information of
NMR studies of the major coat protein of bacteriophage M13. Structural information of gVIIIp in dodecylphosphocholine micelles. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles NMR studies of the major coat protein of bacteriophage M13. Structural information of gVIIIp in dodecylphosphocholine micelles. Eur J Biochem. 1995 Sep 1;232(2):490-500 Authors: Papavoine CH, Aelen JM, Konings RN, Hilbers CW, Van de Ven FJ The membrane-bound...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] NMR studies of the structure and dynamics of membrane-bound bacteriophage Pf1 coat pr
NMR studies of the structure and dynamics of membrane-bound bacteriophage Pf1 coat protein. Related Articles NMR studies of the structure and dynamics of membrane-bound bacteriophage Pf1 coat protein. Science. 1991 May 31;252(5010):1303-5 Authors: Shon KJ, Kim Y, Colnago LA, Opella SJ Filamentous bacteriophage coat protein undergoes a remarkable structural transition during the viral assembly process as it is transferred from the membrane environment of the cell, where it spans the phospholipid bilayer, to the newly extruded virus particles....
nmrlearner Journal club 0 08-21-2010 11:16 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:45 AM.


Map