BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-26-2011, 07:00 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Structure Calculation from Unambiguous Long-Range Amide and Methyl (1)H-(1)H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy.

Structure Calculation from Unambiguous Long-Range Amide and Methyl (1)H-(1)H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy.

Structure Calculation from Unambiguous Long-Range Amide and Methyl (1)H-(1)H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy.

J Am Chem Soc. 2011 Mar 24;

Authors: Linser R, Bardiaux B, Higman V, Fink U, Reif B

Magic-angle spinning (MAS) solid-state NMR becomes an increasingly important tool for the determination of structures of membrane proteins and amyloid fibrils. Extensive deuteration of the protein allows multidimensional experiments with exceptionally high sensitivity and resolution to be obtained. Here we present an experimental strategy to measure highly unambiguous spatial correlations for distances up to 13 Å. Two complementary three-dimensional experiments, or alternatively a four-dimensional experiment, yield highly unambiguous cross-peak assignments, which rely on four encoded chemical shift dimensions. Correlations to residual aliphatic protons are accessible via synchronous evolution of the (15)N and (13)C chemical shifts, which encode valuable amide-methyl distance restraints. On average, we obtain six restraints per residue. Importantly, 50% of all restraints correspond to long-range distances between residues i and j with |i - j| > 5, which are of particular importance in structure calculations. Using ARIA, we calculate a high-resolution structure for the microcrystalline 7.2 kDa ?-spectrin SH3 domain with a backbone precision of ~1.1 Å.

PMID: 21434634 [PubMed - as supplied by publisher]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Side-chain to backbone correlations from solid-state NMR of perdeuterated proteins through combined excitation and long-range magnetization transfers
Side-chain to backbone correlations from solid-state NMR of perdeuterated proteins through combined excitation and long-range magnetization transfers Abstract Proteins with excessive deuteration give access to proton detected solid-state NMR spectra of extraordinary resolution and sensitivity. The high spectral quality achieved after partial proton back-exchange has been shown to start a new era for backbone assignment, protein structure elucidation, characterization of protein dynamics, and access to protein parts undergoing motion. The large absence of protons at non-exchangeable...
nmrlearner Journal club 0 08-11-2011 02:24 AM
Side-chain to backbone correlations from solid-state NMR of perdeuterated proteins through combined excitation and long-range magnetization transfers.
Side-chain to backbone correlations from solid-state NMR of perdeuterated proteins through combined excitation and long-range magnetization transfers. Side-chain to backbone correlations from solid-state NMR of perdeuterated proteins through combined excitation and long-range magnetization transfers. J Biomol NMR. 2011 Aug 7; Authors: Linser R Proteins with excessive deuteration give access to proton detected solid-state NMR spectra of extraordinary resolution and sensitivity. The high spectral quality achieved after partial proton back-exchange...
nmrlearner Journal club 0 08-09-2011 12:11 PM
Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints.
Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints. Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints. J Am Chem Soc. 2011 Apr 4; Authors: Ryabov Y, Schwieters CD, Clore GM (15)N R(2)/R(1) relaxation data contain information on molecular shape and size as well as on bond vector orientations relative to...
nmrlearner Journal club 0 04-06-2011 10:54 AM
Impact of 15N R2/R1 Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints
Impact of 15N R2/R1 Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints Yaroslav Ryabov, Charles D. Schwieters and G. Marius Clore http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja201020c/aop/images/medium/ja-2011-01020c_0002.gif Journal of the American Chemical Society DOI: 10.1021/ja201020c http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/3J1IyCLkQMQ
nmrlearner Journal club 0 04-05-2011 10:37 AM
Structure Calculation from Unambiguous Long-Range Amide and Methyl 1H-1H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy
Structure Calculation from Unambiguous Long-Range Amide and Methyl 1H-1H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy Rasmus Linser, Benjamin Bardiaux, Victoria Higman, Uwe Fink and Bernd Reif http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja110222h/aop/images/medium/ja-2010-10222h_0004.gif Journal of the American Chemical Society DOI: 10.1021/ja110222h http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/Dh0EBf8PwcY
nmrlearner Journal club 0 03-24-2011 08:02 PM
Protein structure calculation with data imputation: the use of substitute restraints
Protein structure calculation with data imputation: the use of substitute restraints Abstract The amount of experimental restraints e.g., NOEs is often too small for calculating high quality three-dimensional structures by restrained molecular dynamics. Considering this as a typical missing value problem we propose here a model based data imputation technique that should lead to an improved estimation of the correct structure. The novel automated method implemented in AUREMOL makes a more efficient use of the experimental information to obtain NMR structures with higher accuracy. It...
nmrlearner Journal club 0 01-09-2011 12:46 PM
[NMR paper] Water-protein interactions in microcrystalline crh measured by 1H-13C solid-state NMR
Water-protein interactions in microcrystalline crh measured by 1H-13C solid-state NMR spectroscopy. Related Articles Water-protein interactions in microcrystalline crh measured by 1H-13C solid-state NMR spectroscopy. J Am Chem Soc. 2003 Nov 5;125(44):13336-7 Authors: Lesage A, Böckmann A Using solid-state NMR carbon-proton dipolar correlation spectroscopy, we observed hydrogen exchange on the millisecond time scale between water molecules and protein protons in a solid sample. These interactions are shown to be related to important structural...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] De novo determination of protein structure by NMR using orientational and long-range
De novo determination of protein structure by NMR using orientational and long-range order restraints. Related Articles De novo determination of protein structure by NMR using orientational and long-range order restraints. J Mol Biol. 2000 May 19;298(5):927-36 Authors: Hus JC, Marion D, Blackledge M Orientational and novel long-range order restraints available from paramagnetic systems have been used to determine the backbone solution structure of the cytochrome c' protein to atomic resolution in the complete absence of restraints derived from...
nmrlearner Journal club 0 11-18-2010 09:15 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:53 AM.


Map