BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-05-2015, 08:10 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Structure of the α-crystallin domain from the redox-sensitive chaperone, HSPB1

Structure of the α-crystallin domain from the redox-sensitive chaperone, HSPB1



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] NMR-monitored titration of acid-stress bacterial chaperone HdeA reveals that Asp and Glu charge neutralization produces a loosened dimer structure in preparation for protein unfolding and chaperone activation.
NMR-monitored titration of acid-stress bacterial chaperone HdeA reveals that Asp and Glu charge neutralization produces a loosened dimer structure in preparation for protein unfolding and chaperone activation. Related Articles NMR-monitored titration of acid-stress bacterial chaperone HdeA reveals that Asp and Glu charge neutralization produces a loosened dimer structure in preparation for protein unfolding and chaperone activation. Protein Sci. 2013 Dec 4; Authors: Garrison MA, Crowhurst KA Abstract HdeA is a periplasmic chaperone...
nmrlearner Journal club 0 01-01-2014 03:05 PM
NMR-monitored titration of acid-stress bacterial chaperone HdeA reveals that Asp and Glu charge neutralization produces a loosened dimer structure in preparation for protein unfolding and chaperone activation
NMR-monitored titration of acid-stress bacterial chaperone HdeA reveals that Asp and Glu charge neutralization produces a loosened dimer structure in preparation for protein unfolding and chaperone activation Abstract HdeA is a periplasmic chaperone found in several gram-negative pathogenic bacteria that are linked to millions of cases of dysentery per year worldwide. After the protein becomes activated at low pH, it can bind to other periplasmic proteins, protecting them from aggregation when the bacteria travel through the stomach on their way to colonize the intestines. It has been...
nmrlearner Journal club 0 12-24-2013 01:04 PM
NMR-monitored titration of acid-stress bacterial chaperone HdeA reveals that Asp and Glu charge neutralization produces a loosened dimer structure in preparation for protein unfolding and chaperone activation
NMR-monitored titration of acid-stress bacterial chaperone HdeA reveals that Asp and Glu charge neutralization produces a loosened dimer structure in preparation for protein unfolding and chaperone activation Abstract HdeA is a periplasmic chaperone found in several gram-negative pathogenic bacteria that are linked to millions of cases of dysentery per year worldwide. After the protein becomes activated at low pH, it can bind to other periplasmic proteins, protecting them from aggregation when the bacteria travel through the stomach on their way to colonize the intestines. It has been...
nmrlearner Journal club 0 12-04-2013 03:12 PM
[NMR paper] Monitoring the interaction between ?2-microglobulin and the molecular chaperone ?B-crystallin by NMR and mass spectrometry. ?B-Crystallin dissociates ?2-microglobulin oligomers.
Monitoring the interaction between ?2-microglobulin and the molecular chaperone ?B-crystallin by NMR and mass spectrometry. ?B-Crystallin dissociates ?2-microglobulin oligomers. Related Articles Monitoring the interaction between ?2-microglobulin and the molecular chaperone ?B-crystallin by NMR and mass spectrometry. ?B-Crystallin dissociates ?2-microglobulin oligomers. J Biol Chem. 2013 May 3; Authors: Esposito G, Garvey M, Alverdi V, Pettirossi F, Corazza A, Fogolari F, Polano M, Mangione PP, Giorgetti S, Stoppini M, Rekas A, Bellotti V, Heck AJ, Carver JA...
nmrlearner Journal club 0 05-07-2013 01:30 PM
[NMR paper] Redox behaviour of the haem domain of flavocytochrome c3 from Shewanella frigidimarin
Redox behaviour of the haem domain of flavocytochrome c3 from Shewanella frigidimarina probed by NMR. Related Articles Redox behaviour of the haem domain of flavocytochrome c3 from Shewanella frigidimarina probed by NMR. FEBS Lett. 2004 Dec 3;578(1-2):185-90 Authors: Pessanha M, Rothery EL, Louro RO, Turner DL, Miles CS, Reid GA, Chapman SK, Xavier AV, Salgueiro CA Flavocytochrome c3 from Shewanella frigidimarina (fcc3) is a tetrahaem periplasmic protein of 64 kDa with fumarate reductase activity. This work reports the first example of NMR...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] Folding and domain-domain interactions of the chaperone PapD measured by 19F NMR.
Folding and domain-domain interactions of the chaperone PapD measured by 19F NMR. Related Articles Folding and domain-domain interactions of the chaperone PapD measured by 19F NMR. Biochemistry. 2004 Nov 2;43(43):13775-86 Authors: Bann JG, Frieden C The folding of the two-domain bacterial chaperone PapD has been studied to develop an understanding of the relationship between individual domain folding and the formation of domain-domain interactions. PapD contains six phenylalanine residues, four in the N-terminal domain and two in the...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain:
NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain: a preview of chaperone-protein interaction. Related Articles NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain: a preview of chaperone-protein interaction. Biochemistry. 1998 Jun 2;37(22):7929-40 Authors: Wang H, Kurochkin AV, Pang Y, Hu W, Flynn GC, Zuiderweg ER The solution structure of the 21 kDa substrate-binding domain of the Escherichia coli Hsp70-chaperone protein DnaK (DnaK 386-561) has been determined to a precision...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] Probing the structure and interactions of crystallin proteins by NMR spectroscopy.
Probing the structure and interactions of crystallin proteins by NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Probing the structure and interactions of crystallin proteins by NMR spectroscopy. Prog Retin Eye Res. 1999 Jul;18(4):431-62 Authors: Carver JA The lens is composed primarily of proteins, the crystallins, at high concentration whose structure and interactions are responsible for lens transparency. As there is no protein turnover in the...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:33 AM.


Map