Related ArticlesStructural studies by proton-NMR spectroscopy of plant horseradish peroxidase C, the wild-type recombinant protein from Escherichia coli and two protein variants, Phe41----Val and Arg38----Lys.
Eur J Biochem. 1992 Jul 15;207(2):521-31
Authors: Veitch NC, Williams RJ, Bray RC, Burke JF, Sanders SA, Thorneley RN, Smith AT
Wild-type recombinant horseradish peroxidase isoenzyme C and two protein variants, Phe41----Val and Arg38----Lys, have been characterised using both one- and two-dimensional NMR spectroscopy. Proton NMR spectra recorded in both resting and cyanide-ligated states of the proteins were compared with those of the corresponding plant peroxidase. The latter contains 18% carbohydrate in eight N-linked oligosaccharide side chains whereas the recombinant proteins are expressed in nonglycosylated form. The spectra of the plant enzyme and refolded recombinant protein are essentially identical with the exception of carbohydrate-linked resonances in the former, indicating that their solution structures are highly similar. This comparison also identifies classes of carbohydrate resonances in the plant enzyme which provides new information on the local environment and mobility of the oligosaccharide side chains. Comparison of the spectra of the cyanide-ligated states of the two variants and those of plant horseradish peroxidase C indicated that there were significant differences with respect to haem and haem-linked resonances. These could not be rationalised simply on the basis of the local perturbation expected from a single-site substitution. The two substitutions made to residues on the distal side of the haem apparently influenced the degree of imidazolate character of the proximal His170 imidazole ring thus perturbing the magnetic environment of the haem group. Inspection of the spectra of the Phe41----Val variant also showed that the resonances of a phenylalanine residue in the haem pocket had been incorrectly assigned to Phe41 in a previous study. A new assignment, based on additional information from two-dimensional nuclear Overhauser enhancement spectroscopy, was made to Phe152. The assignments made for the Phe41----Val variant were also used as a basis to investigate the structure of the complex formed with the aromatic donor molecule, benzhydroxamic acid.
Plant Cell-Wall Cross-Links by REDOR NMR Spectroscopy.
Plant Cell-Wall Cross-Links by REDOR NMR Spectroscopy.
Related Articles Plant Cell-Wall Cross-Links by REDOR NMR Spectroscopy.
J Am Chem Soc. 2010 Oct 21;
Authors: Cegelski L, O'Connor RD, Stueber D, Singh M, Poliks B, Schaefer J
We present a new method that integrates selective biosynthetic labeling and solid-state NMR detection to identify in situ important protein cross-links in plant cell walls. We have labeled soybean cells by growth in media containing l-tyrosine and l-tyrosine, compared whole-cell and cell-wall (13)C CPMAS spectra, and...
nmrlearner
Journal club
0
10-23-2010 05:48 PM
Plant Cell-Wall Cross-Links by REDOR NMR Spectroscopy
Plant Cell-Wall Cross-Links by REDOR NMR Spectroscopy
Lynette Cegelski, Robert D. O’Connor, Dirk Stueber, Manmilan Singh, Barbara Poliks and Jacob Schaefer
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja104827k/aop/images/medium/ja-2010-04827k_0006.gif
Journal of the American Chemical Society
DOI: 10.1021/ja104827k
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/1kI0vIFK7eU
nmrlearner
Journal club
0
10-22-2010 07:34 AM
[NMR paper] Solution characterisation by NMR spectroscopy of two horseradish peroxidase isoenzyme
Solution characterisation by NMR spectroscopy of two horseradish peroxidase isoenzyme C mutants with alanine replacing either Phe142 or Phe143.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Solution characterisation by NMR spectroscopy of two horseradish peroxidase isoenzyme C mutants with alanine replacing either Phe142 or Phe143.
Eur J Biochem. 1995 Oct 15;233(2):650-8
Authors: Veitch NC, Williams RJ, Bone NM, Burke JF, Smith AT
...
nmrlearner
Journal club
0
08-22-2010 03:50 AM
[NMR paper] Proton NMR studies of the structural and dynamical effect of chemical modification of
Proton NMR studies of the structural and dynamical effect of chemical modification of a single aromatic side-chain in a snake cardiotoxin. Relation to the structure of the putative binding site and the cytolytic activity of the toxin.
Related Articles Proton NMR studies of the structural and dynamical effect of chemical modification of a single aromatic side-chain in a snake cardiotoxin. Relation to the structure of the putative binding site and the cytolytic activity of the toxin.
J Mol Biol. 1994 Nov 4;243(4):719-35
Authors: Roumestand C, Gilquin B,...
nmrlearner
Journal club
0
08-22-2010 03:29 AM
[NMR paper] Studies of protein-protein association between yeast cytochrome c peroxidase and yeas
Studies of protein-protein association between yeast cytochrome c peroxidase and yeast iso-1 ferricytochrome c by hydrogen-deuterium exchange labeling and proton NMR spectroscopy.
Related Articles Studies of protein-protein association between yeast cytochrome c peroxidase and yeast iso-1 ferricytochrome c by hydrogen-deuterium exchange labeling and proton NMR spectroscopy.
Biochemistry. 1994 Oct 11;33(40):12032-41
Authors: Yi Q, Erman JE, Satterlee JD
Hydrogen-deuterium (H-D) exchange labeling and proton NMR have been applied to study the...
nmrlearner
Journal club
0
08-22-2010 03:29 AM
[NMR paper] 2D NMR of paramagnetic metalloenzymes: cyanide-inhibited horseradish peroxidase.
2D NMR of paramagnetic metalloenzymes: cyanide-inhibited horseradish peroxidase.
Related Articles 2D NMR of paramagnetic metalloenzymes: cyanide-inhibited horseradish peroxidase.
J Biomol NMR. 1991 Jul;1(2):175-90
Authors: de Ropp JS, Yu LP, La Mar GN
Two-dimensional (2D) proton NMR correlation spectroscopy, COSY, and nuclear Overhauser spectroscopy, NOESY, have been used to explore the applicability of these methods for the moderately large (42 KDa), paramagnetic cyanide-inhibited derivative of horseradish peroxidase, HRP-CN. The target...
nmrlearner
Journal club
0
08-21-2010 11:16 PM
[NMR paper] Comparative proton NMR analysis of wild-type cytochrome c peroxidase from yeast, the
Comparative proton NMR analysis of wild-type cytochrome c peroxidase from yeast, the recombinant enzyme from Escherichia coli, and an Asp-235----Asn-235 mutant.
Related Articles Comparative proton NMR analysis of wild-type cytochrome c peroxidase from yeast, the recombinant enzyme from Escherichia coli, and an Asp-235----Asn-235 mutant.
Biochemistry. 1990 Sep 18;29(37):8797-804
Authors: Satterlee JD, Erman JE, Mauro JM, Kraut J
Proton NMR spectra of cytochrome c peroxidase (CcP) isolated from yeast (wild type) and two Escherichia coli...
nmrlearner
Journal club
0
08-21-2010 11:04 PM
[NMR paper] Two-dimensional 1H-NMR studies of horseradish peroxidase C and its interaction with i
Two-dimensional 1H-NMR studies of horseradish peroxidase C and its interaction with indole-3-propionic acid.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Two-dimensional 1H-NMR studies of horseradish peroxidase C and its interaction with indole-3-propionic acid.
Eur J Biochem. 1990 Apr 30;189(2):351-62
Authors: Veitch NC, Williams RJ
The binding of aromatic donor molecules to plant peroxidases has been investigated by examining...