BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-03-2018, 02:16 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,791
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Structural mechanisms for the S-nitrosylation-derived protection of mouse galectin-2 from oxidation-induced inactivation revealed by NMR.

Structural mechanisms for the S-nitrosylation-derived protection of mouse galectin-2 from oxidation-induced inactivation revealed by NMR.

Structural mechanisms for the S-nitrosylation-derived protection of mouse galectin-2 from oxidation-induced inactivation revealed by NMR.

FEBS J. 2018 Feb 02;:

Authors: Sakakura M, Tamura M, Fujii N, Takeuchi T, Hatanaka T, Kishimoto S, Arata Y, Takahashi H

Abstract
Galectin-2 (Gal-2) is a lectin thought to play protective roles in the gastrointestinal tract. Oxidation of mouse Gal-2 (mGal-2) by hydrogen peroxide (H2 O2 ) results in the loss of sugar-binding activity, whereas S-nitrosylation of mGal-2, which does not change its sugar-binding profile, has been shown to protect the protein from H2 O2 -induced inactivation. One of the two cysteine residues, C57, has been identified as being responsible for controlling H2 O2 -induced inactivation; however, the underlying molecular mechanism has not been elucidated. We performed structural analyses of mGal-2 using NMR and found that residues near C57 experienced significant chemical shift changes following S-nitrosylation, and that S-nitrosylation slowed the H2 O2 -induced aggregation of mGal-2. We also revealed that S-nitrosylation improves the thermal stability of mGal-2, and that the solvent accessibility and/or local dynamics of residues near C57 and the local dynamics of the core-forming residues in mGal-2 are reduced by S-nitrosylation. Structural models of Gal-2 indicated that C57 is located in a hydrophobic pocket that can be plugged by S-nitrosylation, which was supported by the NMR experiments. Based on these results, we propose two structural mechanisms by which S-nitrosylation protects mGal-2 from H2 O2 -induced aggregation without changing its sugar-binding profile: (1) stabilization of the hydrophobic pocket around C57 that prevents oxidation-induced destabilization of the pocket, and (2) prevention of oxidation of C57 during the transiently unfolded state of the protein, in which the residue is exposed to H2 O2 . This article is protected by copyright. All rights reserved.


PMID: 29392834 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Phosphorylation-induced conformation of ?2-adrenoceptor related to arrestin recruitment revealed by NMR.
Phosphorylation-induced conformation of ?2-adrenoceptor related to arrestin recruitment revealed by NMR. Related Articles Phosphorylation-induced conformation of ?2-adrenoceptor related to arrestin recruitment revealed by NMR. Nat Commun. 2018 Jan 15;9(1):194 Authors: Shiraishi Y, Natsume M, Kofuku Y, Imai S, Nakata K, Mizukoshi T, Ueda T, Iwaï H, Shimada I Abstract The C-terminal region of G-protein-coupled receptors (GPCRs), stimulated by agonist binding, is phosphorylated by GPCR kinases, and the phosphorylated GPCRs bind to...
nmrlearner Journal club 0 01-18-2018 12:41 PM
EPR Imaging Spin Probe Trityl Radical OX063: A Method for Its Isolation from Animal Effluent, Redox Chemistry of Its Quinone Methide Oxidation Product, and in Vivo Application in a Mouse
From The DNP-NMR Blog: EPR Imaging Spin Probe Trityl Radical OX063: A Method for Its Isolation from Animal Effluent, Redox Chemistry of Its Quinone Methide Oxidation Product, and in Vivo Application in a Mouse p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Serda, M., et al., EPR Imaging Spin Probe Trityl Radical OX063: A Method for Its Isolation from Animal Effluent, Redox Chemistry of Its Quinone Methide Oxidation Product, and in Vivo Application in a Mouse. Chem Res Toxicol, 2016. 29(12): p. 2153-2156. ...
nmrlearner News from NMR blogs 0 04-20-2017 04:08 AM
[NMR paper] Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and (19)F-NMR.
Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and (19)F-NMR. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and (19)F-NMR. Nat Commun. 2015;6:8202 Authors: Yang F, Yu X, Liu C, Qu CX, Gong Z, Liu HD, Li FH, Wang HM, He DF, Yi F, Song C, Tian CL, Xiao KH, Wang JY, Sun JP Abstract Specific arrestin conformations are coupled to distinct downstream effectors, which underlie the functions of many...
nmrlearner Journal club 0 09-09-2015 11:49 AM
[NMR paper] Mechanisms of amyloid formation revealed by solution NMR.
Mechanisms of amyloid formation revealed by solution NMR. Related Articles Mechanisms of amyloid formation revealed by solution NMR. Prog Nucl Magn Reson Spectrosc. 2015 Aug;88-89:86-104 Authors: Karamanos TK, Kalverda AP, Thompson GS, Radford SE Abstract Amyloid fibrils are proteinaceous elongated aggregates involved in more than fifty human diseases. Recent advances in electron microscopy and solid state NMR have allowed the characterization of fibril structures to different extents of refinement. However, structural details...
nmrlearner Journal club 0 08-19-2015 03:24 PM
Mechanisms of amyloid formation revealed by solution NMR
Mechanisms of amyloid formation revealed by solution NMR Publication date: Available online 26 May 2015 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Author(s): Theodoros K. Karamanos , Arnout P. Kalverda , Gary S. Thompson , Sheena E. Radford</br> Amyloid fibrils are proteinaceous elongated aggregates involved in more than fifty human diseases. Recent advances in electron microscopy and solid state NMR have allowed the characterization of fibril structures to different extents of refinement. However, structural details about the mechanism of...
nmrlearner Journal club 0 05-28-2015 12:56 AM
[NMR paper] Mechanisms of peptide-induced pore formation in lipid bilayers investigated by oriented 31P solid-state NMR spectroscopy.
Mechanisms of peptide-induced pore formation in lipid bilayers investigated by oriented 31P solid-state NMR spectroscopy. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.plosone.org-images-pone_120x30.png http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Mechanisms of peptide-induced pore formation in lipid bilayers investigated by oriented 31P solid-state NMR spectroscopy. PLoS One. 2012;7(10):e47745 Authors: Bertelsen K,...
nmrlearner Journal club 0 04-02-2013 07:23 PM
[NMR paper] Molecular recognition of aminoglycoside antibiotics by bacterial defence proteins: NMR study of the structural and conformational features of streptomycin inactivation by Bacillus subtilis aminoglycoside-6-adenyl transferase.
Molecular recognition of aminoglycoside antibiotics by bacterial defence proteins: NMR study of the structural and conformational features of streptomycin inactivation by Bacillus subtilis aminoglycoside-6-adenyl transferase. Related Articles Molecular recognition of aminoglycoside antibiotics by bacterial defence proteins: NMR study of the structural and conformational features of streptomycin inactivation by Bacillus subtilis aminoglycoside-6-adenyl transferase. Chemistry. 2005 Aug 19;11(17):5102-13 Authors: Corzana F, Cuesta I, Bastida A, Hidalgo A,...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] 1H-NMR and raman studies on perforating trauma-induced cataract formation in a mouse
1H-NMR and raman studies on perforating trauma-induced cataract formation in a mouse lens. Related Articles 1H-NMR and raman studies on perforating trauma-induced cataract formation in a mouse lens. Biochim Biophys Acta. 2000 Mar 6;1474(1):23-30 Authors: Nakamura K, Jung YM, Era S, Sogami M, Ozaki Y, Takasaki A In order to provide new insight into the molecular mechanism of perforating trauma-induced cataract formation in an 8-week-old ddY mouse lens, we performed an in situ investigation into changes in the water-protein and/or...
nmrlearner Journal club 0 11-18-2010 09:15 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:52 AM.


Map