BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-19-2013, 08:55 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,776
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Structural Elucidation of Transmembrane Transporter Protein Bilitranslocase: Conformational analysis of the second transmembrane region TM2 by molecular dynamics and NMR spectroscopy.

Structural Elucidation of Transmembrane Transporter Protein Bilitranslocase: Conformational analysis of the second transmembrane region TM2 by molecular dynamics and NMR spectroscopy.

Related Articles Structural Elucidation of Transmembrane Transporter Protein Bilitranslocase: Conformational analysis of the second transmembrane region TM2 by molecular dynamics and NMR spectroscopy.

Biochim Biophys Acta. 2013 Jun 14;

Authors: Choudhury AR, Perdih A, Zuperl S, Sikorska E, Solmajer T, Jurga S, Zhukov I, Novi? M

Abstract
Membrane proteins represent about a third of the gene products in most organisms, as revealed by the genome sequencing projects. They account for up to two thirds of known drugable targets, which emphasizes their critical pharmaceutical importance. Here we present a study on bilitranslocase (BTL) (TCDB 2.A.65), a membrane protein primarily involved in the transport of bilirubin from blood to liver cells. Bilitranslocase has also been identified as a potential membrane transporter for cellular uptake of several drugs and due to its implication in drug uptake, it is extremely important to advance the knowledge about its 3D structure. However, at present, only a limited knowledge is available beyond the primary structure of BTL. It has been recently confirmed experimentally that one of the four computationally predicted transmembrane segments of bilitranslocase, TM3, has a helical structure with hydrophilic amino acid residues oriented towards one side, which is typical for transmembrane domains of membrane proteins. In this study we confirmed by the use of multidimensional NMR spectroscopy that the second transmembrane segment, TM2, also appears in a form of ?-helix. The stability of this polypeptide chain was verified by molecular dynamics (MD) simulation in dipalmitoyl phosphatidyl choline (DPPC) and in sodium dodecyl sulfate (SDS) micelles. The two ?-helices, TM2 corroborated in this study, and TM3 confirmed in our previous investigation, provide reasonable building blocks of a potential transmembrane channel for transport of bilirubin and small hydrophilic molecules, including pharmaceutically active compounds.


PMID: 23774522 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Structural Elucidation of Transmembrane Transporter Protein Bilitranslocase: Conformational analysis of the second transmembrane region TM2 by molecular dynamics and NMR spectroscopy
Structural Elucidation of Transmembrane Transporter Protein Bilitranslocase: Conformational analysis of the second transmembrane region TM2 by molecular dynamics and NMR spectroscopy Publication date: Available online 14 June 2013 Source:Biochimica et Biophysica Acta (BBA) - Biomembranes</br> Author(s): Amrita Roy Choudhury , Andrej Perdih , Špela Župerl , Emilia Sikorska , Tom Solmajer , Stefan Jurga , Igor Zhukov , Marjana Novi?</br> Membrane proteins represent about a third of the gene products in most organisms, as revealed by the genome sequencing...
nmrlearner Journal club 0 06-15-2013 08:18 AM
Site-Specific Solid-State NMR Detection of Hydrogen-Deuterium Exchange Reveals Conformational Changes in a 7-Helical Transmembrane Protein.
Site-Specific Solid-State NMR Detection of Hydrogen-Deuterium Exchange Reveals Conformational Changes in a 7-Helical Transmembrane Protein. Site-Specific Solid-State NMR Detection of Hydrogen-Deuterium Exchange Reveals Conformational Changes in a 7-Helical Transmembrane Protein. Biophys J. 2011 Aug 3;101(3):L23-L25 Authors: Wang S, Shi L, Kawamura I, Brown LS, Ladizhansky V Solid-state NMR spectroscopy is an efficient tool for following conformational dynamics of membrane proteins at atomic resolution. We used this technique for the site-specific...
nmrlearner Journal club 0 08-03-2011 12:00 PM
Choosing membrane mimetics for NMR structural studies of transmembrane proteins.
Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim Biophys Acta. 2011 Apr 5; Authors: Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand E, Marcotte I The native environment of membrane proteins is complex and scientists have felt the need to simplify it to reduce the number of varying parameters. However, experimental problems can also arise from oversimplification which contributes to why membrane proteins are...
nmrlearner Journal club 0 04-12-2011 11:08 AM
Structure and dynamics of the lipid modifications of a transmembrane ?-helical peptide determined by (2)H solid-state NMR spectroscopy.
Structure and dynamics of the lipid modifications of a transmembrane ?-helical peptide determined by (2)H solid-state NMR spectroscopy. Structure and dynamics of the lipid modifications of a transmembrane ?-helical peptide determined by (2)H solid-state NMR spectroscopy. Biochim Biophys Acta. 2010 Dec 28; Authors: Penk A, Müller M, Scheidt HA, Langosch D, Huster D The fusion of biological membranes is mediated by integral membrane proteins with ?-helical transmembrane segments. Additionally, those proteins are often modified by the covalent...
nmrlearner Journal club 0 01-05-2011 09:51 PM
[NMR paper] Conformational heterogeneity of transmembrane residues after the Schiff base reproton
Conformational heterogeneity of transmembrane residues after the Schiff base reprotonation of bacteriorhodopsin: 15N CPMAS NMR of D85N/T170C membranes. Related Articles Conformational heterogeneity of transmembrane residues after the Schiff base reprotonation of bacteriorhodopsin: 15N CPMAS NMR of D85N/T170C membranes. FEBS J. 2005 May;272(9):2152-64 Authors: Mason AJ, Turner GJ, Glaubitz C bR, N-like and O-like intermediate states of methionine-labelled wild type and D85N/T170C bacteriorhodopsin were accumulated in native membranes by...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] Investigating the conformational coupling between the transmembrane and cytoplasmic d
Investigating the conformational coupling between the transmembrane and cytoplasmic domains of a single-spanning membrane protein. A 1H-NMR study. Related Articles Investigating the conformational coupling between the transmembrane and cytoplasmic domains of a single-spanning membrane protein. A 1H-NMR study. FEBS Lett. 2001 Sep 21;505(3):431-5 Authors: Mousson F, Beswick V, Coïc YM, Huynh-Dinh T, Sanson A, Neumann JM PMP1 is a 38-residue single-spanning membrane protein whose C-terminal cytoplasmic domain, Y25-F38, is highly positively...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] Structure of outer membrane protein A transmembrane domain by NMR spectroscopy.
Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Related Articles Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat Struct Biol. 2001 Apr;8(4):334-8 Authors: Arora A, Abildgaard F, Bushweller JH, Tamm LK We have determined the three-dimensional fold of the 19 kDa (177 residues) transmembrane domain of the outer membrane protein A of Escherichia coli in dodecylphosphocholine (DPC) micelles in solution using heteronuclear NMR. The structure consists of an eight-stranded beta-barrel...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Synthesis and conformational analysis by 1H NMR and restrained molecular dynamics sim
Synthesis and conformational analysis by 1H NMR and restrained molecular dynamics simulations of the cyclic decapeptide Related Articles Synthesis and conformational analysis by 1H NMR and restrained molecular dynamics simulations of the cyclic decapeptide J Comput Aided Mol Des. 1996 Jun;10(3):213-32 Authors: Buono RA, Kucharczyk N, Neuenschwander M, Kemmink J, Hwang LY, Fauchère JL, Venanzi CA The design of enzyme mimics with therapeutic and industrial applications has interested both experimental and computational chemists for several...
nmrlearner Journal club 0 08-22-2010 02:27 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:48 PM.


Map