Related ArticlesStructural and dynamic characterization of the phosphotyrosine binding region of a Src homology 2 domain--phosphopeptide complex by NMR relaxation, proton exchange, and chemical shift approaches.
Biochemistry. 1995 Sep 12;34(36):11353-62
Authors: Pascal SM, Yamazaki T, Singer AU, Kay LE, Forman-Kay JD
Arginine side chains are often involved in protein--protein and protein--nucleic acid interactions. Due to a number of factors, resonance assignment and detection of NOEs involving the arginine side chains via standard NMR techniques can be difficult. We present here an approach to characterization of the interaction between a phosphopeptide (pY1021) and four arginine residues that line the phosphotyrosine-binding pocket of the C-terminal SH2 domain of phospholipase C-gamma 1 (PLCC SH2). Previously published [Pascal, S. M., et al. (1994) Cell 77, 461] NOE data provide a partial description of this interaction, including contacts between the aliphatic region of Arg 59 and the phosphotyrosine (pTyr) aromatic ring. Further characterization has now been accomplished by using 15N and 13C NMR relaxation studies of arginine N episilon and C zeta spins, respectively, and proton exchange rates of arginine H episilon nuclei. Differences between the chemical shifts of the arginine guanidino groups of the free SH2 domain in imidazole and phosphate buffers or in complex with pY1021 have provided insight into specific interactions with the phosphate and the aromatic ring of the pTyr. The resulting data are consistent with the most stable hydrogen bonds to phosphate donated by the Arg 39 epsilon-NH and the two Arg 37 eta-NH2 groups and with pTyr aromatic ring interactions involving the Arg 39 and possibly the Arg 18 guanidino groups.
Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain.
Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain.
Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain.
Biochimie. 2011 Sep 22;
Authors: Galea CA, Mobli M, McNeil KA, Mulhern TD, Wallace JC, King GF, Forbes BE, Norton RS
Abstract
The insulin-like growth factor binding proteins are a family of six proteins (IGFBP-1 to 6) that bind insulin-like growth factors-I and -II (IGF-I/II) with high affinity. In addition...
nmrlearner
Journal club
0
09-30-2011 06:00 AM
Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain.
Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain.
Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain.
Biochimie. 2011 Sep 22;
Authors: Galea CA, Mobli M, McNeil KA, Mulhern TD, Wallace JC, King GF, Forbes BE, Norton RS
Abstract
The insulin-like growth factor binding proteins are a family of six proteins (IGFBP-1 to 6) that bind insulin-like growth factors-I and -II (IGF-I/II) with high affinity. In...
nmrlearner
Journal club
0
09-30-2011 05:59 AM
[NMR paper] NMR assignment and structural characterization of the fatty acid binding protein from
NMR assignment and structural characterization of the fatty acid binding protein from the flight muscle of Locusta migratoria.
Related Articles NMR assignment and structural characterization of the fatty acid binding protein from the flight muscle of Locusta migratoria.
J Biomol NMR. 2003 Apr;25(4):355-6
Authors: Lücke C, Kizilbash N, van Moerkerk HT, Veerkamp JH, Hamilton JA
nmrlearner
Journal club
0
11-24-2010 09:01 PM
[NMR paper] Peptide hormone binding to G-protein-coupled receptors: structural characterization v
Peptide hormone binding to G-protein-coupled receptors: structural characterization via NMR techniques.
Related Articles Peptide hormone binding to G-protein-coupled receptors: structural characterization via NMR techniques.
Med Res Rev. 2001 Sep;21(5):450-71
Authors: Mierke DF, Giragossian C
G-protein-coupled receptors (GPCRs) allow cells to respond to calcium, hormones, and neurotransmitters. Not surprisingly, they currently make up the largest family of validated drug targets. Rational drug design for molecular regulators targeting GPCRs...
nmrlearner
Journal club
0
11-19-2010 08:44 PM
[NMR paper] NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobi
NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding.
Related Articles NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding.
Biochemistry. 2001 Mar 27;40(12):3561-71
Authors: Yao J, Chung J, Eliezer D, Wright PE, Dyson HJ
Apomyoglobin forms a denatured state under low-salt conditions at pH 2.3. The conformational propensities and polypeptide backbone dynamics...
nmrlearner
Journal club
0
11-19-2010 08:32 PM
[NMR paper] Structural preordering in the N-terminal region of ribosomal protein S4 revealed by h
Structural preordering in the N-terminal region of ribosomal protein S4 revealed by heteronuclear NMR spectroscopy.
Related Articles Structural preordering in the N-terminal region of ribosomal protein S4 revealed by heteronuclear NMR spectroscopy.
Biochemistry. 2000 Nov 7;39(44):13602-13
Authors: Sayers EW, Gerstner RB, Draper DE, Torchia DA
Protein S4, a component of the 30S subunit of the prokaryotic ribosome, is one of the first proteins to interact with rRNA in the process of ribosome assembly and is known to be involved in the regulation...
nmrlearner
Journal club
0
11-19-2010 08:29 PM
[NMR paper] Structural and dynamic characterization of the urea denatured state of the immunoglob
Structural and dynamic characterization of the urea denatured state of the immunoglobulin binding domain of streptococcal protein G by multidimensional heteronuclear NMR spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Structural and dynamic characterization of the urea denatured state of the immunoglobulin binding domain of streptococcal...
nmrlearner
Journal club
0
08-22-2010 03:50 AM
[NMR paper] The mobile loop region of the NAD(H) binding component (dI) of proton-translocating n
The mobile loop region of the NAD(H) binding component (dI) of proton-translocating nicotinamide nucleotide transhydrogenase from Rhodospirillum rubrum: complete NMR assignment and effects of bound nucleotides.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles The mobile loop region of the NAD(H) binding component (dI) of proton-translocating nicotinamide nucleotide transhydrogenase from Rhodospirillum rubrum: complete NMR assignment and effects of bound nucleotides.
Biochim Biophys Acta. 1999...