Structural characterization of recombinant human myoglobin isoforms by (1)H and (129)Xe NMR and molecular dynamics simulations.
Biochim Biophys Acta. 2011 Jul 13;
Authors: Gussoni M, Scorciapino MA, Vezzoli A, Anedda R, Greco F, Ceccarelli M, Casu M
Myoglobin (Mb), the main cytosolic oxygen storage/deliver protein, is also known to interact with different small ligands exerting other fundamental physiological roles. In Humans up to five different Mb isoforms are present. The two most expressed ones (>90%) differ only at the 54th position, K54 (Mb-I) and E54 (Mb-II) respectively. High-altitude populations are characterized by a higher Mb concentration in skeletal muscle, totally attributable to Mb-II, as well as a higher efficiency of locomotion, leading to the hypothesis of a cause-effect relationship with the evolutionary response to the high-altitude hypoxic environment. In this work, a first structural characterization of the two more expressed human Mb isoforms has been carried out. In particular, a detailed (1)H and (129)Xe NMR study was aimed to characterize the structure of the hydrophobic cavities around the heme group. Experimental results have been compared to those from MD simulations, i.e. volume fluctuations and occurrence. Electronic structure of the heme ring ground state resulted to be comparable for the two investigated isoforms, despite the single point mutation at position 54. However, the use of (129)Xe as a probe revealed small but significant modifications in the structure of internal cavities. MD simulations supported NMR results indicating interesting structural/dynamical differences in the average volume and occurrence of the main cavities lining Mb prosthetic group.
PMID: 21782983 [PubMed - as supplied by publisher]
Structure and Dynamics of the A?2130 Peptide from the Interplay of NMR Experiments and Molecular Simulations
Structure and Dynamics of the A?2130 Peptide from the Interplay of NMR Experiments and Molecular Simulations
Nicolas L. Fawzi, Aaron H. Phillips, Jory Z. Ruscio, Michaeleen Doucleff, David E. Wemmer and Teresa Head-Gordon
Journal of the American Chemical Society
DOI: 10.1021/ja204315n
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/bEQEah_ik60
nmrlearner
Journal club
0
07-09-2011 07:11 AM
[NMR paper] Molecular dynamics simulations of protein G challenge NMR-derived correlated backbone
Molecular dynamics simulations of protein G challenge NMR-derived correlated backbone motions.
Related Articles Molecular dynamics simulations of protein G challenge NMR-derived correlated backbone motions.
Angew Chem Int Ed Engl. 2005 May 30;44(22):3394-9
Authors: Lange OF, Grubmüller H, de Groot BL
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] NMR-detected hydrogen exchange and molecular dynamics simulations provide structural
NMR-detected hydrogen exchange and molecular dynamics simulations provide structural insight into fibril formation of prion protein fragment 106-126.
Related Articles NMR-detected hydrogen exchange and molecular dynamics simulations provide structural insight into fibril formation of prion protein fragment 106-126.
Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14790-5
Authors: Kuwata K, Matumoto T, Cheng H, Nagayama K, James TL, Roder H
PrP106-126, a peptide corresponding to residues 107-127 of the human prion protein, induces neuronal cell...
nmrlearner
Journal club
0
11-24-2010 09:16 PM
[NMR paper] Molecular dynamics simulations of photoactive yellow protein (PYP) in three states of
Molecular dynamics simulations of photoactive yellow protein (PYP) in three states of its photocycle: a comparison with X-ray and NMR data and analysis of the effects of Glu46 deprotonation and mutation.
Related Articles Molecular dynamics simulations of photoactive yellow protein (PYP) in three states of its photocycle: a comparison with X-ray and NMR data and analysis of the effects of Glu46 deprotonation and mutation.
Eur Biophys J. 2002 Dec;31(7):504-20
Authors: Antes I, Thiel W, van Gunsteren WF
Photoactive yellow protein (PYP) is a...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] The solution conformations of amino acids from molecular dynamics simulations of Gly-
The solution conformations of amino acids from molecular dynamics simulations of Gly-X-Gly peptides: comparison with NMR parameters.
Related Articles The solution conformations of amino acids from molecular dynamics simulations of Gly-X-Gly peptides: comparison with NMR parameters.
Biochem Cell Biol. 1998;76(2-3):164-70
Authors: van der Spoel D
The conformations that amino acids can adopt in the random coil state are of fundamental interest in the context of protein folding research and studies of protein-peptide interactions. To date, no...
nmrlearner
Journal club
0
11-17-2010 11:06 PM
Constraining Binding Hot Spots: NMR and Molecular Dynamics Simulations Provide a Stru
Constraining Binding Hot Spots: NMR and Molecular Dynamics Simulations Provide a Structural Explanation for Enthalpy-Entropy Compensation in SH2-Ligand Binding.
Related Articles Constraining Binding Hot Spots: NMR and Molecular Dynamics Simulations Provide a Structural Explanation for Enthalpy-Entropy Compensation in SH2-Ligand Binding.
J Am Chem Soc. 2010 Aug 18;132(32):11058-70
Authors: Ward JM, Gorenstein NM, Tian J, Martin SF, Post CB
NMR spectroscopy and molecular dynamics (MD) simulations were used to probe the structure and dynamics...
nmrlearner
Journal club
0
08-17-2010 03:36 AM
Using NMR Chemical Shifts as Structural Restraints in Molecular Dynamics Simulations
Using NMR Chemical Shifts as Structural Restraints in Molecular Dynamics Simulations of Proteins.
Related Articles Using NMR Chemical Shifts as Structural Restraints in Molecular Dynamics Simulations of Proteins.
Structure. 2010 Aug 11;18(8):923-933
Authors: Robustelli P, Kohlhoff K, Cavalli A, Vendruscolo M
We introduce a procedure to determine the structures of proteins by incorporating NMR chemical shifts as structural restraints in molecular dynamics simulations. In this approach, the chemical shifts are expressed as differentiable...