Structural characterization of intrinsically disordered proteins by NMR spectroscopy.
Molecules. 2013;18(9):10802-28
Authors: Kosol S, Contreras-Martos S, Cedeño C, Tompa P
Abstract
Recent advances in NMR methodology and techniques allow the structural investigation of biomolecules of increasing size with atomic resolution. NMR spectroscopy is especially well-suited for the study of intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) which are in general highly flexible and do not have a well-defined secondary or tertiary structure under functional conditions. In the last decade, the important role of IDPs in many essential cellular processes has become more evident as the lack of a stable tertiary structure of many protagonists in signal transduction, transcription regulation and cell-cycle regulation has been discovered. The growing demand for structural data of IDPs required the development and adaption of methods such as 13C-direct detected experiments, paramagnetic relaxation enhancements (PREs) or residual dipolar couplings (RDCs) for the study of 'unstructured' molecules in vitro and in-cell. The information obtained by NMR can be processed with novel computational tools to generate conformational ensembles that visualize the conformations IDPs sample under functional conditions. Here, we address NMR experiments and strategies that enable the generation of detailed structural models of IDPs.
[NMR paper] Conformational Propensities of Intrinsically Disordered Proteins from NMR Chemical Shifts.
Conformational Propensities of Intrinsically Disordered Proteins from NMR Chemical Shifts.
Related Articles Conformational Propensities of Intrinsically Disordered Proteins from NMR Chemical Shifts.
Chemphyschem. 2013 Jun 21;
Authors: Kragelj J, Ozenne V, Blackledge M, Jensen MR
Abstract
The realization that a protein can be fully functional even in the absence of a stable three-dimensional structure has motivated a large number of studies describing the conformational behaviour of these proteins at atomic resolution. Here, we review...
nmrlearner
Journal club
0
06-26-2013 09:39 AM
[NMR paper] Describing intrinsically disordered proteins at atomic resolution by NMR.
Describing intrinsically disordered proteins at atomic resolution by NMR.
Related Articles Describing intrinsically disordered proteins at atomic resolution by NMR.
Curr Opin Struct Biol. 2013 Mar 29;
Authors: Jensen MR, Ruigrok RW, Blackledge M
Abstract
There is growing interest in the development of physical methods to study the conformational behaviour and biological activity of intrinsically disordered proteins (IDPs). In this review recent advances in the elucidation of quantitative descriptions of disordered proteins from...
nmrlearner
Journal club
0
04-03-2013 08:22 PM
Describing intrinsically disordered proteins at atomic resolution by NMR
Describing intrinsically disordered proteins at atomic resolution by NMR
Available online 29 March 2013
Publication year: 2013
Source:Current Opinion in Structural Biology</br>
</br>
There is growing interest in the development of physical methods to study the conformational behaviour and biological activity of intrinsically disordered proteins (IDPs). In this review recent advances in the elucidation of quantitative descriptions of disordered proteins from nuclear magnetic resonance spectroscopy are presented. Ensemble approaches are particularly well adapted to map the...
nmrlearner
Journal club
0
03-29-2013 07:52 PM
An assignment of intrinsically disordered regions of proteins based on NMR structures
An assignment of intrinsically disordered regions of proteins based on NMR structures
January 2013
Publication year: 2013
Source:Journal of Structural Biology, Volume 181, Issue 1</br>
</br>
Intrinsically disordered proteins (IDPs) do not adopt stable three-dimensional structures in physiological conditions, yet these proteins play crucial roles in biological phenomena. In most cases, intrinsic disorder manifests itself in segments or domains of an IDP, called intrinsically disordered regions (IDRs), but fully disordered IDPs also exist. Although IDRs can be detected as...
nmrlearner
Journal club
0
02-03-2013 10:13 AM
Intrinsically disordered proteins: A conversation with Rohit Pappu - Phys.Org
Intrinsically disordered proteins: A conversation with Rohit Pappu - Phys.Org
<img alt="" height="1" width="1" />
Intrinsically disordered proteins: A conversation with Rohit Pappu
Phys.Org
The earliest clue was that some protein segments didn't show up in X-ray crystallography or NMR studies, the standard ways of studying protein structure. By the 1990s people who studied how proteins interact with DNA had noticed the proteins often ...
and more »
Read here
nmrlearner
Online News
0
09-20-2012 06:36 PM
Intrinsically disordered proteins - PhysicsToday.org
Intrinsically disordered proteins - PhysicsToday.org
<img alt="" height="1" width="1" />
Intrinsically disordered proteins
PhysicsToday.org
Indeed, much of the community's understanding of protein function rests on our ability to deduce those structures by such methods as x-ray crystallography and nuclear magnetic resonance (NMR). The immense success and explanatory power of the ...
Read here
nmrlearner
Online News
0
08-01-2012 09:35 PM
Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins.
Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins.
Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins.
J Biol Chem. 2011 Apr 20;
Authors: Iwasa H, Meshitsuka S, Hongo K, Mizobata T, Kawata Y
Co-chaperonin GroES from E. coli works with chaperonin GroEL to mediate the folding reactions of various proteins. However, under specific conditions, i. e., the...
nmrlearner
Journal club
0
04-22-2011 02:00 PM
Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH
Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH
Abstract Secondary chemical shift analysis is the main NMR method for detection of transiently formed secondary structure in intrinsically disordered proteins. The quality of the secondary chemical shifts is dependent on an appropriate choice of random coil chemical shifts. We report random coil chemical shifts and sequence correction factors determined for a GGXGG peptide series following the approach of Schwarzinger et al. (J Am Chem Soc 123(13):2970â??2978, 2001). The chemical shifts are...