Related ArticlesStructural Basis for TatA Oligomerization: An NMR Study of Escherichia coli TatA Dimeric Structure.
PLoS One. 2014;9(8):e103157
Authors: Zhang Y, Hu Y, Li H, Jin C
Abstract
Many proteins are transported across lipid membranes by protein translocation systems in living cells. The twin-arginine transport (Tat) system identified in bacteria and plant chloroplasts is a unique system that transports proteins across membranes in their fully-folded states. Up to date, the detailed molecular mechanism of this process remains largely unclear. The Escherichia coli Tat system consists of three essential transmembrane proteins: TatA, TatB and TatC. Among them, TatB and TatC form a tight complex and function in substrate recognition. The major component TatA contains a single transmembrane helix followed by an amphipathic helix, and is suggested to form the translocation pore via self-oligomerization. Since the TatA oligomer has to accommodate substrate proteins of various sizes and shapes, the process of its assembly stands essential for understanding the translocation mechanism. A structure model of TatA oligomer was recently proposed based on NMR and EPR observations, revealing contacts between the transmembrane helices from adjacent subunits. Herein we report the construction and stabilization of a dimeric TatA, as well as the structure determination by solution NMR spectroscopy. In addition to more extensive inter-subunit contacts between the transmembrane helices, we were also able to observe interactions between neighbouring amphipathic helices. The side-by-side packing of the amphipathic helices extends the solvent-exposed hydrophilic surface of the protein, which might be favourable for interactions with substrate proteins. The dimeric TatA structure offers more detailed information of TatA oligomeric interface and provides new insights on Tat translocation mechanism.
PMID: 25090434 [PubMed - as supplied by publisher]
Segmental isotopic labeling of a 140 kDa dimeric multi-domain protein CheA from Escherichia coli by expressed protein ligation and protein trans-splicing
Segmental isotopic labeling of a 140 kDa dimeric multi-domain protein CheA from Escherichia coli by expressed protein ligation and protein trans-splicing
Abstract Segmental isotopic labeling is a powerful labeling tool to facilitate NMR studies of larger proteins by not only alleviating the signal overlap problem but also retaining features of uniform isotopic labeling. Although two approaches, expressed protein ligation (EPL) and protein trans-splicing (PTS), have been mainly used for segmental isotopic labeling, there has been no single example in which both approaches have been...
nmrlearner
Journal club
0
07-02-2012 06:18 AM
[NMR paper] Oligomerization of the EK18 mutant of the trp repressor of Escherichia coli as observ
Oligomerization of the EK18 mutant of the trp repressor of Escherichia coli as observed by NMR spectroscopy.
Related Articles Oligomerization of the EK18 mutant of the trp repressor of Escherichia coli as observed by NMR spectroscopy.
Arch Biochem Biophys. 1999 Nov 1;371(1):35-40
Authors: Chae YK, Abildgaard F, Royer CA, Markley JL
The regulation of the trp repressor system of Escherichia coli is frequently modeled by a single equilibrium, that between the aporepressor (TR) and the corepressor, l-tryptophan (Trp), at their intracellular...
nmrlearner
Journal club
0
11-18-2010 08:31 PM
Membrane Alignment of the Pore-Forming Component TatA(d) of the Twin-Arginine Translo
Membrane Alignment of the Pore-Forming Component TatA(d) of the Twin-Arginine Translocase from Bacillus subtilis Resolved by Solid-State NMR Spectroscopy.
Related Articles Membrane Alignment of the Pore-Forming Component TatA(d) of the Twin-Arginine Translocase from Bacillus subtilis Resolved by Solid-State NMR Spectroscopy.
J Am Chem Soc. 2010 Oct 26;
Authors: Walther TH, Grage SL, Roth N, Ulrich AS
The twin-arginine translocase (Tat) provides protein export in bacteria and plant chloroplasts and is capable of transporting fully folded...
nmrlearner
Journal club
0
10-29-2010 07:05 PM
Solution NMR Structure of the TatA Component of the Twin-Arginine Protein Transport S
Solution NMR Structure of the TatA Component of the Twin-Arginine Protein Transport System from Gram-Positive Bacterium Bacillus subtilis.
Related Articles Solution NMR Structure of the TatA Component of the Twin-Arginine Protein Transport System from Gram-Positive Bacterium Bacillus subtilis.
J Am Chem Soc. 2010 Aug 20;
Authors: Hu Y, Zhao E, Li H, Xia B, Jin C
The twin-arginine transport (Tat) system translocates folded proteins across the bacterial cytoplasmic or chloroplast thylakoid membrane of plants. The Tat system in most Gram-positive...
nmrlearner
Journal club
0
08-25-2010 02:04 PM
[NMR paper] 1H NMR study of the solution molecular and electronic structure of Escherichia coli f
1H NMR study of the solution molecular and electronic structure of Escherichia coli ferricytochrome b562: evidence for S = 1/2 in equilibrium S = 5/2 spin equilibrium for intact His/Met ligation.
Related Articles 1H NMR study of the solution molecular and electronic structure of Escherichia coli ferricytochrome b562: evidence for S = 1/2 in equilibrium S = 5/2 spin equilibrium for intact His/Met ligation.
Biochemistry. 1991 Feb 26;30(8):2156-65
Authors: Wu JZ, La Mar GN, Yu LP, Lee KB, Walker FA, Chiu ML, Sligar SG
The solution 500-MHz 1H NMR...
nmrlearner
Journal club
0
08-21-2010 11:16 PM
[NMR paper] 1H NMR study of the interaction of ATP with Escherichia coli RNA polymerase containin
1H NMR study of the interaction of ATP with Escherichia coli RNA polymerase containing in vivo-incorporated Co(II).
Related Articles 1H NMR study of the interaction of ATP with Escherichia coli RNA polymerase containing in vivo-incorporated Co(II).
Arch Biochem Biophys. 1991 Dec;291(2):307-10
Authors: Panth H, Brenner MC, Wu FY
The DNA-dependent RNA polymerase containing two intrinsic cobalt ions (Co2-RPase) instead of the naturally occurring zinc was purified from Escherichia coli cells grown in zinc-depleted, cobalt-enriched media....
nmrlearner
Journal club
0
08-21-2010 11:12 PM
[NMR paper] 1H NMR study of the interaction of ATP with Escherichia coli RNA polymerase containin
1H NMR study of the interaction of ATP with Escherichia coli RNA polymerase containing in vivo-incorporated Co(II).
Related Articles 1H NMR study of the interaction of ATP with Escherichia coli RNA polymerase containing in vivo-incorporated Co(II).
Arch Biochem Biophys. 1991 Dec;291(2):307-10
Authors: Panth H, Brenner MC, Wu FY
The DNA-dependent RNA polymerase containing two intrinsic cobalt ions (Co2-RPase) instead of the naturally occurring zinc was purified from Escherichia coli cells grown in zinc-depleted, cobalt-enriched media....
nmrlearner
Journal club
0
08-21-2010 11:12 PM
Solution NMR Structure of the TatA Component of the Twin-Arginine Protein Transport S
Solution NMR Structure of the TatA Component of the Twin-Arginine Protein Transport System from Gram-Positive Bacterium Bacillus subtilis
Yunfei Hu et al
http://pubs.acs.org//appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja1053785/aop/images/medium/ja-2010-053785_0001.gifJournal of the American Chemical Society, Volume 0, Issue 0, Articles ASAP (As Soon As Publishable).
Source: Journal of the American Chemical Society