BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-15-2014, 12:53 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Structural Analysis of N- and O-glycans Using ZIC-HILIC/DIALYSIS Coupled to NMR Detection.

Structural Analysis of N- and O-glycans Using ZIC-HILIC/DIALYSIS Coupled to NMR Detection.

Related Articles Structural Analysis of N- and O-glycans Using ZIC-HILIC/DIALYSIS Coupled to NMR Detection.

Fungal Genet Biol. 2014 Aug 9;

Authors: Qu Y, Feng J, Deng S, Cao L, Zhang Q, Zhao R, Zhang Z, Jiang Y, Zink EM, Baker SE, Lipton MS, Paša-Toli? L, Hu JZ, Wu S

Abstract
Protein glycosylation, an important and complex post-translational modification (PTM), is involved in various biological processes, including the receptor-ligand and cell-cell interaction, and plays a crucial role in many biological functions. However, little is known about the glycan structures of important biological complex samples, and the conventional glycan enrichment strategy (i.e., size-exclusion column [SEC] separation) prior to nuclear magnetic resonance (NMR) detection is time-consuming and tedious. In this study, we developed a glycan enrichment strategy that couples Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) with dialysis strategies to enrich the glycans from the pronase E digests of RNase B, followed by NMR analysis of the glycoconjugate. Our results suggest that the ZIC-HILIC enrichment coupled with dialysis is a simple, fast, and efficient sample preparation approach. The approach was thus applied to the analysis of a biological complex sample, the pronase E digest of the secreted proteins from the fungus Aspergillus niger. The NMR spectra revealed that the secreted proteins from A. niger contain both N-linked glycans with a high-mannose core similar to the structure of the glycan from RNase B, and O-linked glycans bearing mannose and glucose with 1->3 and 1->6 linkages. In all, our study provides compelling evidence that ZIC-HILIC separation coupled with dialysis is very effective and accessible in preparing glycans for the downstream NMR analysis, which could greatly facilitate the future NMR-based glycoproteomics research.


PMID: 25117693 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Comparative NMR analysis of an 80-residue G protein-coupled receptor fragment in two membrane mimetic environments.
Comparative NMR analysis of an 80-residue G protein-coupled receptor fragment in two membrane mimetic environments. Comparative NMR analysis of an 80-residue G protein-coupled receptor fragment in two membrane mimetic environments. Biochim Biophys Acta. 2011 Jul 23; Authors: Cohen LS, Arshava B, Neumoin A, Becker JM, Güntert P, Zerbe O, Naider F Fragments of integral membrane proteins have been used to study the physical chemical properties of regions of transporters and receptors. Ste2p(G31-T110) is an 80-residue polypeptide which contains a...
nmrlearner Journal club 0 07-28-2011 10:51 AM
Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to-low nanomolar range
Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to-low nanomolar range Abstract The mechanism of signal transduction mediated by G protein-coupled receptors is a subject of intense research in pharmacological and structural biology. Ligand association to the receptor constitutes a critical event in the activation process. Solution-state NMR can be amenable to high-resolution structure determination of agonist molecules in their...
nmrlearner Journal club 0 06-25-2011 04:12 AM
NMR insights into the core of GED assembly by H/D exchange coupled with DMSO dissociation and analysis of the denatured state.
NMR insights into the core of GED assembly by H/D exchange coupled with DMSO dissociation and analysis of the denatured state. NMR insights into the core of GED assembly by H/D exchange coupled with DMSO dissociation and analysis of the denatured state. J Mol Biol. 2011 Feb 4;405(5):1202-14 Authors: Chakraborty S, Hosur RV GTPase effector domain (GED) of dynamin forms megadalton-sized assembly in vitro, rendering its structural characterization highly challenging. To probe the core of the GED assembly, we performed H/D exchange in native...
nmrlearner Journal club 0 02-25-2011 08:54 PM
NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic.
NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic. NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic. Nat Chem Biol. 2011 Jan 23; Authors: Barb AW, Prestegard JH The N-glycan at Asn297 of the immunoglobulin G Fc fragment modulates cellular responses of the adaptive immune system. However, the underlying mechanism remains undefined, as existing structural data suggest the glycan does not directly engage cell surface receptors. Here we characterize the dynamics of the glycan termini...
nmrlearner Journal club 0 01-25-2011 02:13 PM
[NMR paper] Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor.
Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor. Related Articles Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor. Biochemistry. 2005 Sep 6;44(35):11795-810 Authors: Estephan R, Englander J, Arshava B, Samples KL, Becker JM, Naider F The yeast Saccharomyces cerevisiae alpha-factor pheromone receptor (Ste2p) was used as a model G protein-coupled receptor (GPCR). A 73-mer multidomain fragment of Ste2p (residues 267-339)...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Detection of conserved N-linked glycans and phase-variable lipooligosaccharides and c
Detection of conserved N-linked glycans and phase-variable lipooligosaccharides and capsules from campylobacter cells by mass spectrometry and high resolution magic angle spinning NMR spectroscopy. Related Articles Detection of conserved N-linked glycans and phase-variable lipooligosaccharides and capsules from campylobacter cells by mass spectrometry and high resolution magic angle spinning NMR spectroscopy. J Biol Chem. 2003 Jul 4;278(27):24509-20 Authors: Szymanski CM, Michael FS, Jarrell HC, Li J, Gilbert M, Larocque S, Vinogradov E, Brisson JR ...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Peptide hormone binding to G-protein-coupled receptors: structural characterization v
Peptide hormone binding to G-protein-coupled receptors: structural characterization via NMR techniques. Related Articles Peptide hormone binding to G-protein-coupled receptors: structural characterization via NMR techniques. Med Res Rev. 2001 Sep;21(5):450-71 Authors: Mierke DF, Giragossian C G-protein-coupled receptors (GPCRs) allow cells to respond to calcium, hormones, and neurotransmitters. Not surprisingly, they currently make up the largest family of validated drug targets. Rational drug design for molecular regulators targeting GPCRs...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] Structure of segments of a G protein-coupled receptor: CD and NMR analysis of the Sac
Structure of segments of a G protein-coupled receptor: CD and NMR analysis of the Saccharomyces cerevisiae tridecapeptide pheromone receptor. Related Articles Structure of segments of a G protein-coupled receptor: CD and NMR analysis of the Saccharomyces cerevisiae tridecapeptide pheromone receptor. Biopolymers. 1998 Nov;46(6):343-57 Authors: Arshava B, Liu SF, Jiang H, Breslav M, Becker JM, Naider F Peptides representing both loop and the sixth transmembrane regions of the alpha-factor receptor of Saccharomyces cerevisiae were synthesized by...
nmrlearner Journal club 0 11-17-2010 11:15 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:53 PM.


Map