BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-05-2024, 09:41 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Streamlining NMR Chemical Shift Predictions for Intrinsically Disordered Proteins: Design of Ensembles with Dimensionality Reduction and Clustering

Streamlining NMR Chemical Shift Predictions for Intrinsically Disordered Proteins: Design of Ensembles with Dimensionality Reduction and Clustering

By merging advanced dimensionality reduction (DR) and clustering algorithm (CA) techniques, our study advances the sampling procedure for predicting NMR chemical shifts (CS) in intrinsically disordered proteins (IDPs), making a significant leap forward in the field of protein analysis/modeling. We enhance NMR CS sampling by generating clustered ensembles that accurately reflect the different properties and phenomena encapsulated by the IDP trajectories. This investigation critically assessed...

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
The PROSECCO server for chemical shift predictions in ordered and disordered proteins
The PROSECCO server for chemical shift predictions in ordered and disordered proteins Abstract The chemical shifts measured in solution-state and solid-state nuclear magnetic resonance (NMR) are powerful probes of the structure and dynamics of protein molecules. The exploitation of chemical shifts requires methods to correlate these data with the protein structures and sequences. We present here an approach to calculate accurate chemical shifts in both ordered and disordered proteins using exclusively the information contained in their sequences....
nmrlearner Journal club 0 11-09-2017 08:55 AM
A reduced dimensionality NMR pulse sequence and an efficient protocol for unambiguous assignment in intrinsically disordered proteins
A reduced dimensionality NMR pulse sequence and an efficient protocol for unambiguous assignment in intrinsically disordered proteins Abstract Resonance assignment in intrinsically disordered proteins poses a great challenge because of poor chemical shift dispersion in most of the nuclei that are commonly monitored. Reduced dimensionality (RD) experiments where more than one nuclei are co-evolved simultaneously along one of the time axes of a multi-dimensional NMR experiment help to resolve this problem partially, and one can conceive of different...
nmrlearner Journal club 0 06-19-2014 10:21 PM
[NMR paper] A reduced dimensionality NMR pulse sequence and an efficient protocol for unambiguous assignment in intrinsically disordered proteins.
A reduced dimensionality NMR pulse sequence and an efficient protocol for unambiguous assignment in intrinsically disordered proteins. Related Articles A reduced dimensionality NMR pulse sequence and an efficient protocol for unambiguous assignment in intrinsically disordered proteins. J Biomol NMR. 2014 May 23; Authors: Reddy JG, Hosur RV Abstract Resonance assignment in intrinsically disordered proteins poses a great challenge because of poor chemical shift dispersion in most of the nuclei that are commonly monitored....
nmrlearner Journal club 0 05-24-2014 04:50 PM
[NMR paper] Generating NMR Chemical Shift Assignments of Intrinsically Disordered Proteins Using Carbon-Detect NMR Methods.
Generating NMR Chemical Shift Assignments of Intrinsically Disordered Proteins Using Carbon-Detect NMR Methods. Related Articles Generating NMR Chemical Shift Assignments of Intrinsically Disordered Proteins Using Carbon-Detect NMR Methods. Anal Biochem. 2013 Dec 9; Authors: Sahu D, Bastidas M, Showalter S Abstract There is an extraordinary need to describe the structures of intrinsically disordered proteins (IDPs) due to their role in various biological processes involved in signaling and transcription. However, general study of IDPs...
nmrlearner Journal club 0 12-18-2013 04:00 PM
Generating NMR Chemical Shift Assignments of Intrinsically Disordered Proteins Using Carbon-Detect NMR Methods
Generating NMR Chemical Shift Assignments of Intrinsically Disordered Proteins Using Carbon-Detect NMR Methods Publication date: Available online 10 December 2013 Source:Analytical Biochemistry</br> Author(s): Debashish Sahu , Monique Bastidas , Scott Showalter</br> There is an extraordinary need to describe the structures of intrinsically disordered proteins (IDPs) due to their role in various biological processes involved in signaling and transcription. However, general study of IDPs by NMR spectroscopy is limited by the poor 1H-amide chemical shift dispersion...
nmrlearner Journal club 0 12-10-2013 04:48 AM
[NMR paper] High-dimensionality (13)C direct-detected NMR experiments for the automatic assignment of intrinsically disordered proteins.
High-dimensionality (13)C direct-detected NMR experiments for the automatic assignment of intrinsically disordered proteins. Related Articles High-dimensionality (13)C direct-detected NMR experiments for the automatic assignment of intrinsically disordered proteins. J Biomol NMR. 2013 Nov 8; Authors: Bermel W, Felli IC, Gonnelli L, Ko?mi?ski W, Piai A, Pierattelli R, Zawadzka-Kazimierczuk A Abstract We present three novel exclusively heteronuclear 5D (13)C direct-detected NMR experiments, namely (H(N-flip)N)CONCACON, (HCA)CONCACON and...
nmrlearner Journal club 0 11-11-2013 01:30 AM
4D Non-uniformly sampled HCBCACON and 1J(NCα)-selective HCBCANCO experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins
4D Non-uniformly sampled HCBCACON and 1J(NCα)-selective HCBCANCO experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins Abstract A pair of 4D NMR experiments for the backbone assignment of disordered proteins is presented. The experiments exploit 13C direct detection and non-uniform sampling of the indirectly detected dimensions, and provide correlations of the aliphatic proton (Hα, and Hβ) and carbon (Cα, Cβ) resonance frequencies to the protein backbone. Thus, all the chemical shifts regularly used to map the transient...
nmrlearner Journal club 0 05-17-2012 08:40 AM
Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH
Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH Abstract Secondary chemical shift analysis is the main NMR method for detection of transiently formed secondary structure in intrinsically disordered proteins. The quality of the secondary chemical shifts is dependent on an appropriate choice of random coil chemical shifts. We report random coil chemical shifts and sequence correction factors determined for a GGXGG peptide series following the approach of Schwarzinger et al. (J Am Chem Soc 123(13):2970â??2978, 2001). The chemical shifts are...
nmrlearner Journal club 0 01-17-2011 02:40 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:51 AM.


Map