BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 01-08-2013, 09:23 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,715
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default A straightforward method for stereospecific assignment of val and leu prochiral methyl groups by solid-state NMR: Scrambling in the [2-13C]Glucose labeling scheme

A straightforward method for stereospecific assignment of val and leu prochiral methyl groups by solid-state NMR: Scrambling in the [2-13C]Glucose labeling scheme


Available online 4 January 2013
Publication year: 2013
Source:Journal of Magnetic Resonance



The unambiguous stereospecific assignment of the prochiral methyl groups in Val and Leu plays an important role in the structural investigation of proteins by NMR. Here, we present a straightforward method for their stereospecific solid-state NMR assignment based on [2-13C]Glucose ([2-13C]Glc) as the sole carbon source during protein expression. The approach is fundamentally based on the stereo-selective biosynthetic pathway of Val and Leu, and the co-presence of [2-13C]pyruvate produced mainly by glycolysis and [3-13C]/[1,3-13C]pyruvate most probably formed through scrambling in the pentose phosphate pathway. As a consequence, the isotope spin pairs of 13C?-13C?2 and 13C?-13C?1 in Val, and 13C?-13C?2 and 13C?-13C?1 in Leu are obtained. The approach is successfully demonstrated with the stereospecific assignment of the methyl groups of Val and Leu of type 3 secretion system PrgI needles and microcrystalline ubiquitin.
Graphical abstract

Highlights

? Stereospecific assignments can improve the accuracy and precision of NMR structures. ? New strategy for solid-state NMR stereospecific resonance assignment of Val and Leu. ? Based on protein production in Escherichia coli media containing [2-13C]Glucose. ? Spectral simplification in the often congested methyl region. ? Applications to PrgI needles and ubiquitin are shown.





Source: Journal of Magnetic Resonance
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Straightforward, effective calibration of SPINAL-64 decoupling results in the enhancement of sensitivity and resolution of biomolecular solid-state NMR.
Straightforward, effective calibration of SPINAL-64 decoupling results in the enhancement of sensitivity and resolution of biomolecular solid-state NMR. Straightforward, effective calibration of SPINAL-64 decoupling results in the enhancement of sensitivity and resolution of biomolecular solid-state NMR. J Magn Reson. 2010 Dec 31; Authors: Comellas G, Lopez JJ, Nieuwkoop AJ, Lemkau LR, Rienstra CM We describe a simple yet highly effective optimization strategy for SPINAL-64 (1)H decoupling conditions for magic-angle spinning solid-state NMR. With...
nmrlearner Journal club 0 02-08-2011 06:28 PM
A simple biosynthetic method for stereospecific resonance assignment of prochiral methyl groups in proteins
A simple biosynthetic method for stereospecific resonance assignment of prochiral methyl groups in proteins Abstract A new method for stereospecific assignment of prochiral methyl groups in proteins is presented in which protein samples are produced using U-glucose and subsaturating amounts of 2-methyl-acetolactate. The resulting non-uniform labeling pattern allows proR and proS methyl groups to be easily distinguished by their different phases in a constant-time two-dimensional 1H-13C correlation spectra. Protein samples are conveniently prepared using the same media composition as the...
nmrlearner Journal club 0 02-06-2011 07:42 PM
Straightforward, effective calibration of SPINAL-64 decoupling results in the enhancement of sensitivity and resolution of biomolecular solid-state NMR
Straightforward, effective calibration of SPINAL-64 decoupling results in the enhancement of sensitivity and resolution of biomolecular solid-state NMR Publication year: 2010 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 31 December 2010</br> Gemma, Comellas , Jakob J., Lopez , Andrew J., Nieuwkoop , Luisel R., Lemkau , Chad M., Rienstra</br> We describe a simple yet highly effective optimization strategy for SPINAL-64 1H decoupling conditions for magic-angle spinning solid-state NMR. With adjustment of the phase angles in a coupled manner,...
nmrlearner Journal club 0 01-01-2011 08:57 AM
Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm.
Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm. Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm. J Biomol NMR. 2010 Dec 18; Authors: Hefke F, Bagaria A, Reckel S, Ullrich SJ, Dötsch V, Glaubitz C, Güntert P We present a computational method for finding optimal labeling patterns for the backbone...
nmrlearner Journal club 0 12-21-2010 01:00 PM
Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm
Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm Abstract We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273â??6279 (1982)), types of amino acids are labeled with 13C or/and 15N such that cross peaks between 13CO(i â?? 1) and 15NH(i) result only for pairs...
nmrlearner Journal club 0 12-21-2010 02:14 AM
[NMR paper] A combinatorial selective labeling method for the assignment of backbone amide NMR re
A combinatorial selective labeling method for the assignment of backbone amide NMR resonances. Related Articles A combinatorial selective labeling method for the assignment of backbone amide NMR resonances. J Am Chem Soc. 2004 Apr 28;126(16):5020-1 Authors: Parker MJ, Aulton-Jones M, Hounslow AM, Craven CJ A combinatorial selective labeling (CSL) method is presented for the assignment of backbone amide NMR resonances, which has a particular application in the identification of protein-ligand interaction sites. The method builds on the dual...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Stereospecific assignments of the leucine methyl resonances in the 1H NMR spectrum of
Stereospecific assignments of the leucine methyl resonances in the 1H NMR spectrum of Lactobacillus casei dihydrofolate reductase. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Stereospecific assignments of the leucine methyl resonances in the 1H NMR spectrum of Lactobacillus casei dihydrofolate reductase. FEBS Lett. 1993 Mar 1;318(2):177-80 Authors: Ostler G, Soteriou A, Moody CM, Khan JA, Birdsall B, Carr MD, Young DW, Feeney J A general method is described for the...
nmrlearner Journal club 0 08-21-2010 11:53 PM
High Resolution 1H Detected 1H,13C Correlation Spectra in MAS Solid-State NMR using Deuterated Proteins with Selective 1H,2H Isotopic Labeling of Methyl Groups
High Resolution <SUP>1</SUP>H Detected <SUP>1</SUP>H,<SUP>13</SUP>C Correlation Spectra in MAS Solid-State NMR using Deuterated Proteins with Selective <SUP>1</SUP>H,<SUP>2</SUP>H Isotopic Labeling of Methyl Groups Vipin Agarwal, Anne Diehl, Nikolai Skrynnikov, and Bernd Reif J. Am. Chem. Soc.; 2006; 128(39) pp 12620 - 12621; Abstract: MAS solid-state NMR experiments applied to biological solids are still hampered by low sensitivity and resolution. In this work, we employ a deuteration scheme in which individual methyl groups are selectively protonated. This labeling scheme...
administrator Solid-state high-res. NMR 1 08-05-2009 03:21 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:23 AM.


Map