BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-22-2015, 06:36 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Spinning proteins, the faster, the better?

Spinning proteins, the faster, the better?

Publication date: April 2015
Source:Journal of Magnetic Resonance, Volume 253

Author(s): Anja Böckmann , Matthias Ernst , Beat H. Meier

Magic-angle spinning (MAS) is a technique that is a prerequisite for high-resolution solid-state NMR spectroscopy of proteins and other biomolecules. Recently, the 100kHz limit for the rotation frequency has been broken, arguably making MAS rotors the man-made objects with the highest rotation frequency. This development is expected to have a significant impact on biomolecular NMR as it facilitates proton detection, which allows to partially compensate the loss in overall sensitivity associated with the small sample amounts that fit into MAS rotors with less than 1mm outer diameter. Under these conditions, the mass-normalized sensitivity of a small rotor becomes much higher than that of larger-volume rotor.
Graphical abstract

Highlights








More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Recent advances in magic angle spinning solid state NMR of membrane proteins
From The DNP-NMR Blog: Recent advances in magic angle spinning solid state NMR of membrane proteins Wang, S. and V. Ladizhansky, Recent advances in magic angle spinning solid state NMR of membrane proteins. Prog. NMR. Spec., 2014. 82(0): p. 1-26. http://www.sciencedirect.com/science/article/pii/S0079656514000478
nmrlearner News from NMR blogs 0 08-29-2014 05:36 PM
[NMR paper] Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.
Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. J Am Chem Soc. 2014 Aug 7; Authors: Barbet-Massin E, Pell AJ, Retel J, Andreas LB, Jaudzems K, Franks WT, Nieuwkoop AJ, Hiller M, Higman VA, Guerry P, Bertarello A, Knight MJ, Felletti M, Le Marchand T, Kotelovica S, Akopjana I, Tars K, Stoppini M, Bellotti V, Bolognesi M, Ricagno S, Chou JJ, Griffin RG, Oschkinat H, Lesage A, Emsley L, Herrmann T, Pintacuda G Abstract ...
nmrlearner Journal club 0 08-08-2014 01:45 PM
Recent advances in magic angle spinning solid state NMR of membrane proteins
Recent advances in magic angle spinning solid state NMR of membrane proteins Publication date: Available online 26 July 2014 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Author(s): Shenlin Wang , Vladimir Ladizhansky</br> Membrane proteins mediate many critical functions in cells. Determining their three-dimensional structures in the native lipid environment has been one of the main objectives in structural biology. There are two major NMR methodologies that allow this objective to be accomplished. Oriented sample NMR, which can be applied to...
nmrlearner Journal club 0 07-27-2014 01:05 AM
[NMR paper] Solid-state NMR Spectra of lipid-anchored Proteins under Magic Angle Spinning.
Solid-state NMR Spectra of lipid-anchored Proteins under Magic Angle Spinning. Related Articles Solid-state NMR Spectra of lipid-anchored Proteins under Magic Angle Spinning. J Phys Chem B. 2014 Feb 11; Authors: Nomura K, Harada E, Sugase K, Shimamoto K Abstract Solid-state NMR is a promising tool for elucidating membrane-related biological phenomena. We achieved the measurement of high-resolution solid-state NMR spectra for a lipid-anchored protein embedded in lipid bilayers under magic angle spinning (MAS). To date, solid-state NMR...
nmrlearner Journal club 0 02-13-2014 03:35 PM
[NMR paper] Quadruple-Resonance Magic-Angle Spinning NMR Spectroscopy of Deuterated Solid Proteins.
Quadruple-Resonance Magic-Angle Spinning NMR Spectroscopy of Deuterated Solid Proteins. Related Articles Quadruple-Resonance Magic-Angle Spinning NMR Spectroscopy of Deuterated Solid Proteins. Angew Chem Int Ed Engl. 2014 Jan 29; Authors: Akbey U, Nieuwkoop AJ, Wegner S, Voreck A, Kunert B, Bandara P, Engelke F, Nielsen NC, Oschkinat H Abstract (1) H-detected magic-angle spinning NMR experiments facilitate structural biology of solid proteins, which requires using deuterated proteins. However, often amide protons cannot be back-exchanged...
nmrlearner Journal club 0 01-30-2014 05:38 PM
[NMR paper] Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts.
Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts. Related Articles Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts. J Am Chem Soc. 2013 May 6; Authors: Li J, Pilla KB, Li Q, Zhang Z, Su X, Huber T, Yang J Abstract Magic angle spinning solid-state NMR is a unique technique to study atomic-resolution structure of biomacromolecules which resist crystallization or are too large to study by solution NMR techniques. However, difficulties in obtaining sufficient number...
nmrlearner Journal club 0 05-08-2013 02:49 PM
[NMR paper] Magic Angle Spinning NMR of Paramagnetic Proteins.
Magic Angle Spinning NMR of Paramagnetic Proteins. Related Articles Magic Angle Spinning NMR of Paramagnetic Proteins. Acc Chem Res. 2013 Mar 18; Authors: Knight MJ, Felli IC, Pierattelli R, Emsley L, Pintacuda G Abstract Metal ions are ubiquitous in biochemical and cellular processes. Since many metal ions are paramagnetic due to the presence of unpaired electrons, paramagnetic molecules are an important class of targets for research in structural biology and related fields. Today, NMR spectroscopy plays a central role in the...
nmrlearner Journal club 0 03-20-2013 01:47 PM
[NMR software blog] Faster Faster Faster
Faster Faster Faster Our machines, even when hitting an apparent performance peak, only run at one small fraction of their true potential speed. I feel that today's computers and their software are OK for routine spectra. I couldn't ask for more. Other spectra are quite large, however, and I must wait a few seconds during processing. Without going into the third dimension, consider these novel experiments to measure long range heteronuclear Js. Each row contains at least 4096 points. Quite likely we are going to see larger rows in the next few years. The time required to compute the FFT is...
nmrlearner News from NMR blogs 0 08-21-2010 06:29 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:33 AM.


Map