BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-12-2015, 02:40 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Spin-Label CW Microwave Power Saturation and Rapid Passage with Triangular Non-Adiabatic Rapid Sweep (NARS) and Adiabatic Rapid Passage (ARP) EPR Spectroscopy

Spin-Label CW Microwave Power Saturation and Rapid Passage with Triangular Non-Adiabatic Rapid Sweep (NARS) and Adiabatic Rapid Passage (ARP) EPR Spectroscopy


Publication date: Available online 11 April 2015
Source:Journal of Magnetic Resonance

Author(s): Aaron W. Kittell , James S. Hyde

Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell, A.W., Camenisch, T.G., Ratke, J.J. Sidabras, J.W., Hyde, J.S., 2011 as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions [Kittell, A.W., Hustedt, E.J., Hyde, J.S., 2012], and enhance spectral resolution in copper (II) spectra [Hyde, J.S., Bennett, B., Kittell, A.W., Kowalski, J.M., Sidabras, J.W., 2013]. In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10-3 to 10-7 s in a manner that is analogous to saturation transfer spectroscopy.
Graphical abstract

Highlights








Source: Journal of Magnetic Resonance
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Journal Highlight: Rapid assessment of the illegal presence of 1,3-dimethylamylamine (DMAA) in sports nutrition and dietary supplements using 1H NMR spectroscopy
Journal Highlight: Rapid assessment of the illegal presence of 1,3-dimethylamylamine (DMAA) in sports nutrition and dietary supplements using 1H NMR spectroscopy http://www.spectroscopynow.com/common/images/thumbnails/14898526bb5.jpgA proton NMR method was developed and validated for measuring 1,3-dimethylamylamine in sports nutrition and dietary supplements and is recommended for routine use in food testing, customs or doping control laboratories. Read the rest at Spectroscopynow.com
nmrlearner General 0 10-06-2014 12:37 PM
[NMR paper] Low-power polarization transfer between deuterons and spin-1/2 nuclei using adiabatic (RESPIRATION)CP in solid-state NMR.
Low-power polarization transfer between deuterons and spin-1/2 nuclei using adiabatic (RESPIRATION)CP in solid-state NMR. Related Articles Low-power polarization transfer between deuterons and spin-1/2 nuclei using adiabatic (RESPIRATION)CP in solid-state NMR. Phys Chem Chem Phys. 2014 Jan 13; Authors: Jain SK, Nielsen AB, Hiller M, Handel L, Ernst M, Oschkinat H, Akbey U, Nielsen NC Abstract Establishing high-resolution structures of biological macromolecules in heterogeneous environments by MAS solid-state NMR is an important...
nmrlearner Journal club 0 01-15-2014 05:16 PM
Rapid Measurement of PseudocontactShifts in Metalloproteinsby Proton-Detected Solid-State NMR Spectroscopy
Rapid Measurement of PseudocontactShifts in Metalloproteinsby Proton-Detected Solid-State NMR Spectroscopy Michael J. Knight, Isabella C. Felli, Roberta Pierattelli, Ivano Bertini, Lyndon Emsley, Torsten Herrmann and Guido Pintacuda http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja306813j/aop/images/medium/ja-2012-06813j_0004.gif Journal of the American Chemical Society DOI: 10.1021/ja306813j http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/eCGR552L3hw
nmrlearner Journal club 0 08-31-2012 09:37 PM
Mathematical treatment of adiabatic fast passage pulses for the computation of nuclear spin relaxation rates in proteins with conformational exchange
Mathematical treatment of adiabatic fast passage pulses for the computation of nuclear spin relaxation rates in proteins with conformational exchange Abstract Although originally designed for broadband inversion and decoupling in NMR spectroscopy, recent methodological developments have introduced adiabatic fast passage (AFP) pulses into the field of protein dynamics. AFP pulses employ a frequency sweep, and have not only superior inversion properties with respect to offset effects, but they are also easily implemented into a pulse sequence. As magnetization is dragged from the +z to...
nmrlearner Journal club 0 09-30-2011 08:01 PM
[Question from NMRWiki Q&A forum] adiabatic decoupling
adiabatic decoupling Hi NMRwikiers, for measuring scalar couplings we use some HSQC pulse sequences modified for obtaining the coupling in F1-dimension as a splitting of doublets for CH2 groups. As high resolution is needed we use high folding in the acqusition, but as a result we obtain a lot of coupling artifacts in phenyl signals. We think that the use of adiabatic decoupling schemes should give a reasonably good spectrum of phenyls but I have no experience in adiabatic decoupling. Anyone can give me a hand for Bruker spectrometers? Check if somebody has answered this question on...
nmrlearner News from other NMR forums 0 05-24-2011 10:02 PM
Rapid three-dimensional MAS NMR spectroscopy at critical sensitivity.
Rapid three-dimensional MAS NMR spectroscopy at critical sensitivity. Rapid three-dimensional MAS NMR spectroscopy at critical sensitivity. Angew Chem Int Ed Engl. 2010 Nov 22;49(48):9215-8 Authors: Matsuki Y, Eddy MT, Griffin RG, Herzfeld J
nmrlearner Journal club 0 03-09-2011 02:20 PM
[NMR paper] A concept for rapid protein-structure determination by solid-state NMR spectroscopy.
A concept for rapid protein-structure determination by solid-state NMR spectroscopy. Related Articles A concept for rapid protein-structure determination by solid-state NMR spectroscopy. Angew Chem Int Ed Engl. 2005 Mar 29;44(14):2089-92 Authors: Lange A, Becker S, Seidel K, Giller K, Pongs O, Baldus M
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Rapid sample-mixing technique for transient NMR and photo-CIDNP spectroscopy: applica
Rapid sample-mixing technique for transient NMR and photo-CIDNP spectroscopy: applications to real-time protein folding. Related Articles Rapid sample-mixing technique for transient NMR and photo-CIDNP spectroscopy: applications to real-time protein folding. J Am Chem Soc. 2003 Oct 15;125(41):12484-92 Authors: Mok KH, Nagashima T, Day IJ, Jones JA, Jones CJ, Dobson CM, Hore PJ We describe the development and application of a novel rapid sample-mixing technique for real-time NMR (nuclear magnetic resonance) spectroscopy. The apparatus consists...
nmrlearner Journal club 0 11-24-2010 09:16 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:38 PM.


Map