Abstract Oriented-sample NMR (OS-NMR) has emerged as a powerful tool for the structure determination of membrane proteins in their physiological environments. However, the traditional spectroscopic assignment method in OS NMR that uses the â??shotgunâ?? approach, though effective, is quite labor- and time-consuming as it is based on the preparation of multiple selectively labeled samples. Here we demonstrate that, by using a combination of the spin exchange under mismatched Hartmann-Hahn conditions and a recent sensitivity-enhancement REP-CP sequence, spectroscopic assignment of solid-state NMR spectra of Pf1 coat protein reconstituted in magnetically aligned bicelles can be significantly improved. This method yields a two-dimensional spin-exchanged version of the SAMPI4 spectrum correlating the 15N chemical shift and 15Nâ??1H dipolar couplings, as well as spin-correlations between the (i, i ± 1) amide sites. Combining the spin-exchanged SAMPI4 spectrum with the original SAMPI4 experiment makes it possible to establish sequential assignments, and this technique is generally applicable to other uniaxially aligned membrane proteins. Inclusion of an 15Nâ??15N correlation spectrum into the assignment process helps establish correlations between the peaks in crowded or ambiguous spectral regions of the spin-exchanged SAMPI4 experiment. Notably, unlike the traditional method, only a uniformly labeled protein sample is required for spectroscopic assignment with perhaps only a few selectively labeled â??seedâ?? spectra. Simulations for the magnetization transfer between the dilute spins under mismatched Hartmann Hahn conditions for various B 1 fields have also been performed. The results adequately describe the optimal conditions for establishing the cross peaks, thus eliminating the need for lengthy experimental optimizations.
Content Type Journal Article
Category Article
Pages 1-10
DOI 10.1007/s10858-012-9673-y
Authors
Wenxing Tang, Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, USA
Robert W. Knox, Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, USA
Alexander A. Nevzorov, Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, USA
Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers
Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers
Abstract Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring 1H-15N dipolar couplings (DC) and 15N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal...
Repetitive cross-polarization contacts via equilibration-re-equilibration of the proton bath: sensitivity enhancement for NMR of membrane proteins reconstituted in magnetically aligned bicelles
Repetitive cross-polarization contacts via equilibration-re-equilibration of the proton bath: sensitivity enhancement for NMR of membrane proteins reconstituted in magnetically aligned bicelles
Publication year: 2011
Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 2 July 2011</br>
Wenxing, Tang , Alexander A., Nevzorov</br>
Thermodynamic limit of magnetization corresponding to the intact proton bath often cannot be transferred in a single cross-polarization contact. This is mainly due to the finite ratio between the number densities of the high-...
nmrlearner
Journal club
0
07-05-2011 05:52 AM
[NMR paper] NMR experiments on aligned samples of membrane proteins.
NMR experiments on aligned samples of membrane proteins.
Related Articles NMR experiments on aligned samples of membrane proteins.
Methods Enzymol. 2005;394:350-82
Authors: De Angelis AA, Jones DH, Grant CV, Park SH, Mesleh MF, Opella SJ
NMR methods can be used to determine the structures of membrane proteins. Lipids can be chosen so that protein-containing micelles, bicelles, or bilayers are available as samples. All three types of samples can be aligned weakly or strongly, depending on their rotational correlation time. Solution NMR methods...
nmrlearner
Journal club
0
11-24-2010 11:14 PM
[NMR paper] High-resolution NMR spectroscopy of membrane proteins in aligned bicelles.
High-resolution NMR spectroscopy of membrane proteins in aligned bicelles.
Related Articles High-resolution NMR spectroscopy of membrane proteins in aligned bicelles.
J Am Chem Soc. 2004 Dec 1;126(47):15340-1
Authors: De Angelis AA, Nevzorov AA, Park SH, Howell SC, Mrse AA, Opella SJ
High-resolution solid-state NMR spectra can be obtained from uniformly (15)N-labeled membrane proteins in magnetically aligned bicelles. Fast uniaxial diffusion about the axis of the bilayer normal results in single-line spectra that contain the orientational...
nmrlearner
Journal club
0
11-24-2010 10:03 PM
[NMR paper] Structure determination of aligned samples of membrane proteins by NMR spectroscopy.
Structure determination of aligned samples of membrane proteins by NMR spectroscopy.
Related Articles Structure determination of aligned samples of membrane proteins by NMR spectroscopy.
Magn Reson Chem. 2004 Feb;42(2):162-71
Authors: Nevzorov AA, Mesleh MF, Opella SJ
The paper briefly reviews the process of determining the structures of membrane proteins by NMR spectroscopy of aligned samples, describes the integration of recent developments in the interpretation of spectra of aligned proteins and illustrates the application of these methods...
nmrlearner
Journal club
0
11-24-2010 09:25 PM
[NMR paper] NMR solution structure determination of membrane proteins reconstituted in detergent
NMR solution structure determination of membrane proteins reconstituted in detergent micelles.
Related Articles NMR solution structure determination of membrane proteins reconstituted in detergent micelles.
FEBS Lett. 2003 Nov 27;555(1):144-50
Authors: Fernández C, Wüthrich K
As an alternative to X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy in solution can be used for three-dimensional structure determination of small membrane proteins, preferably proteins with beta-barrel fold. This paper reviews recent achievements as...
nmrlearner
Journal club
0
11-24-2010 09:16 PM
Mechanically, Magnetically, and "Rotationally Aligned" Membrane Proteins in Phospholi
Mechanically, Magnetically, and "Rotationally Aligned" Membrane Proteins in Phospholipid Bilayers Give Equivalent Angular Constraints for NMR Structure Determination.
Related Articles Mechanically, Magnetically, and "Rotationally Aligned" Membrane Proteins in Phospholipid Bilayers Give Equivalent Angular Constraints for NMR Structure Determination.
J Phys Chem B. 2010 Oct 20;
Authors: Park SH, Das BB, De Angelis AA, Scrima M, Opella SJ
The native environment for membrane proteins is the highly asymmetric phospholipid bilayer, and this has a large...