BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 01-20-2016, 11:54 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,733
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach.

Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach.

Related Articles Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach.

J Biomol NMR. 2016 Jan 19;

Authors: Wang S, Matsuda I, Long F, Ishii Y

Abstract
This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40-80*kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055-15058, 2015) combines the reverse (13)C, (15)N-isotope labeling strategy and selective signal quenching using the frequency-selective REDOR pulse sequence under fast MAS. The scheme allows one to selectively observe the signals of "highlighted" labeled amino-acid residues that precede or follow unlabeled residues through selectively quenching (13)CO or (15)N signals for a pair of consecutively labeled residues by recoupling (13)CO-(15)N dipolar couplings. Our numerical simulation results showed that the scheme yielded only ~15*% loss of signals for the highlighted residues while quenching as much as ~90*% of signals for non-highlighted residues. For lysine-reverse-labeled micro-crystalline GB1 protein, the 2D (15)N/(13)C? correlation and 2D (13)C?/(13)CO correlation SSNMR spectra by the HIGHLIGHT approach yielded signals only for six residues following and preceding the unlabeled lysine residues, respectively. The experimental dephasing curves agreed reasonably well with the corresponding simulation results for highlighted and quenched residues at spinning speeds of 40 and 60*kHz. The compatibility of the HIGHLIGHT approach with fast MAS allows for sensitivity enhancement by paramagnetic assisted data collection (PACC) and (1)H detection. We also discuss how the HIGHLIGHT approach facilitates signal assignments using (13)C-detected 3D SSNMR by demonstrating full sequential assignments of lysine-reverse-labeled micro-crystalline GB1 protein (~300*nmol), for which data collection required only 11*h. The HIGHLIGHT approach offers valuable means of signal assignments especially for larger proteins through reducing the number of resonance and clarifying multiple starting points in sequential assignment with enhanced sensitivity.


PMID: 26781951 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach
Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach Abstract This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40â??80Â*kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055â??15058, 2015) combines the reverse 13C,...
nmrlearner Journal club 0 01-19-2016 07:37 PM
[NMR paper] Aromatic spectral editing techniques for magic-angle-spinning solid-state NMR spectroscopy of uniformly (13)C-labeled proteins.
Aromatic spectral editing techniques for magic-angle-spinning solid-state NMR spectroscopy of uniformly (13)C-labeled proteins. Aromatic spectral editing techniques for magic-angle-spinning solid-state NMR spectroscopy of uniformly (13)C-labeled proteins. Solid State Nucl Magn Reson. 2015 Sep 14; Authors: Williams JK, Schmidt-Rohr K, Hong M Abstract The four aromatic amino acids in proteins, namely histidine, phenylalanine, tyrosine, and tryptophan, have strongly overlapping (13)C chemical shift ranges between 100 and 160ppm,...
nmrlearner Journal club 0 10-07-2015 11:27 AM
Aromatic spectral editing Techniques for magic-Angle-spinning solid-state NMR spectroscopy of uniformly 13C-labeled proteins
Aromatic spectral editing Techniques for magic-Angle-spinning solid-state NMR spectroscopy of uniformly 13C-labeled proteins Publication date: Available online 14 September 2015 Source:Solid State Nuclear Magnetic Resonance</br> Author(s): Jonathan K. Williams, Klaus Schmidt-Rohr, Mei Hong</br> The four aromatic amino acids in proteins, namely histidine, phenylalanine, tyrosine, and tryptophan, give highly overlapped 13C chemical shifts between 100 and 160ppm, and have so far been largely neglected in solid-state NMR determination of protein structures. Yet...
nmrlearner Journal club 0 09-14-2015 10:42 PM
[NMR paper] Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling.
Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.plosone.org-images-pone_120x30.png Related Articles Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling. PLoS One. 2015;10(4):e0122714 Authors: Wang S, Parthasarathy S, Nishiyama Y, Endo Y, Nemoto T, Yamauchi K, Asakura T,...
nmrlearner Journal club 0 04-11-2015 12:04 AM
Rapid Proton-DetectedNMR Assignment for Proteinswith Fast Magic Angle Spinning
Rapid Proton-DetectedNMR Assignment for Proteinswith Fast Magic Angle Spinning Emeline Barbet-Massin, Andrew J. Pell, Joren S. Retel, Loren B. Andreas, Kristaps Jaudzems, W. Trent Franks, Andrew J. Nieuwkoop, Matthias Hiller, Victoria Higman, Paul Guerry, Andrea Bertarello, Michael J. Knight, Michele Felletti, Tanguy Le Marchand, Svetlana Kotelovica, Inara Akopjana, Kaspars Tars, Monica Stoppini, Vittorio Bellotti, Martino Bolognesi, Stefano Ricagno, James J. Chou, Robert G. Griffin, Hartmut Oschkinat, Anne Lesage, Lyndon Emsley, Torsten Herrmann and Guido Pintacuda ...
nmrlearner Journal club 0 08-18-2014 10:14 PM
[NMR paper] High-resolution paramagnetically enhanced solid-state NMR spectroscopy of membrane proteins at fast magic angle spinning.
High-resolution paramagnetically enhanced solid-state NMR spectroscopy of membrane proteins at fast magic angle spinning. Related Articles High-resolution paramagnetically enhanced solid-state NMR spectroscopy of membrane proteins at fast magic angle spinning. J Biomol NMR. 2013 Dec 13; Authors: Ward ME, Wang S, Krishnamurthy S, Hutchins H, Fey M, Brown LS, Ladizhansky V Abstract Magic angle spinning nuclear magnetic resonance (MAS NMR) is well suited for the study of membrane proteins in membrane mimetic and native membrane...
nmrlearner Journal club 0 12-18-2013 04:00 PM
[NMR paper] Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning.
Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning. Related Articles Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning. Acc Chem Res. 2013 Jul 26; Authors: Parthasarathy S, Nishiyama Y, Ishii Y Abstract Recent research in fast magic angle spinning (MAS) methods has drasticallyimproved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In...
nmrlearner Journal club 0 07-31-2013 12:00 PM
Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination
Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination Abstract Several techniques for spectral editing of 2D 13Câ??13C correlation NMR of proteins are introduced. They greatly reduce the spectral overlap for five common amino acid types, thus simplifying spectral assignment and conformational analysis. The carboxyl (COO) signals of glutamate and aspartate are selected by suppressing the overlapping amide Nâ??CO peaks through 13Câ??15N dipolar dephasing. The sidechain methine (CH) signals of valine,...
nmrlearner Journal club 0 10-13-2012 04:42 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:07 AM.


Map