This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40â??80Â*kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055â??15058, 2015) combines the reverse 13C, 15N-isotope labeling strategy and selective signal quenching using the frequency-selective REDOR pulse sequence under fast MAS. The scheme allows one to selectively observe the signals of â??highlightedâ?? labeled amino-acid residues that precede or follow unlabeled residues through selectively quenching 13CO or 15N signals for a pair of consecutively labeled residues by recoupling 13COâ??15N dipolar couplings. Our numerical simulation results showed that the scheme yielded only ~15Â*% loss of signals for the highlighted residues while quenching as much as ~90Â*% of signals for non-highlighted residues. For lysine-reverse-labeled micro-crystalline GB1 protein, the 2D 15N/13Cα correlation and 2D 13Cα/13CO correlation SSNMR spectra by the HIGHLIGHT approach yielded signals only for six residues following and preceding the unlabeled lysine residues, respectively. The experimental dephasing curves agreed reasonably well with the corresponding simulation results for highlighted and quenched residues at spinning speeds of 40 and 60Â*kHz. The compatibility of the HIGHLIGHT approach with fast MAS allows for sensitivity enhancement by paramagnetic assisted data collection (PACC) and 1H detection. We also discuss how the HIGHLIGHT approach facilitates signal assignments using 13C-detected 3D SSNMR by demonstrating full sequential assignments of lysine-reverse-labeled micro-crystalline GB1 protein (~300Â*nmol), for which data collection required only 11Â*h. The HIGHLIGHT approach offers valuable means of signal assignments especially for larger proteins through reducing the number of resonance and clarifying multiple starting points in sequential assignment with enhanced sensitivity.
[NMR paper] Aromatic spectral editing techniques for magic-angle-spinning solid-state NMR spectroscopy of uniformly (13)C-labeled proteins.
Aromatic spectral editing techniques for magic-angle-spinning solid-state NMR spectroscopy of uniformly (13)C-labeled proteins.
Aromatic spectral editing techniques for magic-angle-spinning solid-state NMR spectroscopy of uniformly (13)C-labeled proteins.
Solid State Nucl Magn Reson. 2015 Sep 14;
Authors: Williams JK, Schmidt-Rohr K, Hong M
Abstract
The four aromatic amino acids in proteins, namely histidine, phenylalanine, tyrosine, and tryptophan, have strongly overlapping (13)C chemical shift ranges between 100 and 160ppm,...
nmrlearner
Journal club
0
10-07-2015 11:27 AM
Aromatic spectral editing Techniques for magic-Angle-spinning solid-state NMR spectroscopy of uniformly 13C-labeled proteins
Aromatic spectral editing Techniques for magic-Angle-spinning solid-state NMR spectroscopy of uniformly 13C-labeled proteins
Publication date: Available online 14 September 2015
Source:Solid State Nuclear Magnetic Resonance</br>
Author(s): Jonathan K. Williams, Klaus Schmidt-Rohr, Mei Hong</br>
The four aromatic amino acids in proteins, namely histidine, phenylalanine, tyrosine, and tryptophan, give highly overlapped 13C chemical shifts between 100 and 160ppm, and have so far been largely neglected in solid-state NMR determination of protein structures. Yet...
nmrlearner
Journal club
0
09-14-2015 10:42 PM
[NMR paper] Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling.
Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.plosone.org-images-pone_120x30.png Related Articles Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling.
PLoS One. 2015;10(4):e0122714
Authors: Wang S, Parthasarathy S, Nishiyama Y, Endo Y, Nemoto T, Yamauchi K, Asakura T,...
nmrlearner
Journal club
0
04-11-2015 12:04 AM
Rapid Proton-DetectedNMR Assignment for Proteinswith Fast Magic Angle Spinning
Rapid Proton-DetectedNMR Assignment for Proteinswith Fast Magic Angle Spinning
Emeline Barbet-Massin, Andrew J. Pell, Joren S. Retel, Loren B. Andreas, Kristaps Jaudzems, W. Trent Franks, Andrew J. Nieuwkoop, Matthias Hiller, Victoria Higman, Paul Guerry, Andrea Bertarello, Michael J. Knight, Michele Felletti, Tanguy Le Marchand, Svetlana Kotelovica, Inara Akopjana, Kaspars Tars, Monica Stoppini, Vittorio Bellotti, Martino Bolognesi, Stefano Ricagno, James J. Chou, Robert G. Griffin, Hartmut Oschkinat, Anne Lesage, Lyndon Emsley, Torsten Herrmann and Guido Pintacuda
...
nmrlearner
Journal club
0
08-18-2014 10:14 PM
[NMR paper] Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.
Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.
Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.
J Am Chem Soc. 2014 Aug 7;
Authors: Barbet-Massin E, Pell AJ, Retel J, Andreas LB, Jaudzems K, Franks WT, Nieuwkoop AJ, Hiller M, Higman VA, Guerry P, Bertarello A, Knight MJ, Felletti M, Le Marchand T, Kotelovica S, Akopjana I, Tars K, Stoppini M, Bellotti V, Bolognesi M, Ricagno S, Chou JJ, Griffin RG, Oschkinat H, Lesage A, Emsley L, Herrmann T, Pintacuda G
Abstract
...
nmrlearner
Journal club
0
08-08-2014 01:45 PM
[NMR paper] High-resolution paramagnetically enhanced solid-state NMR spectroscopy of membrane proteins at fast magic angle spinning.
High-resolution paramagnetically enhanced solid-state NMR spectroscopy of membrane proteins at fast magic angle spinning.
Related Articles High-resolution paramagnetically enhanced solid-state NMR spectroscopy of membrane proteins at fast magic angle spinning.
J Biomol NMR. 2013 Dec 13;
Authors: Ward ME, Wang S, Krishnamurthy S, Hutchins H, Fey M, Brown LS, Ladizhansky V
Abstract
Magic angle spinning nuclear magnetic resonance (MAS NMR) is well suited for the study of membrane proteins in membrane mimetic and native membrane...
nmrlearner
Journal club
0
12-18-2013 04:00 PM
[NMR paper] Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning.
Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning.
Related Articles Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning.
Acc Chem Res. 2013 Jul 26;
Authors: Parthasarathy S, Nishiyama Y, Ishii Y
Abstract
Recent research in fast magic angle spinning (MAS) methods has drasticallyimproved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In...
nmrlearner
Journal club
0
07-31-2013 12:00 PM
Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination
Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination
Abstract Several techniques for spectral editing of 2D 13Câ??13C correlation NMR of proteins are introduced. They greatly reduce the spectral overlap for five common amino acid types, thus simplifying spectral assignment and conformational analysis. The carboxyl (COO) signals of glutamate and aspartate are selected by suppressing the overlapping amide Nâ??CO peaks through 13Câ??15N dipolar dephasing. The sidechain methine (CH) signals of valine,...