BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 10-13-2012, 04:42 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination

Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination


Abstract Several techniques for spectral editing of 2D 13Câ??13C correlation NMR of proteins are introduced. They greatly reduce the spectral overlap for five common amino acid types, thus simplifying spectral assignment and conformational analysis. The carboxyl (COO) signals of glutamate and aspartate are selected by suppressing the overlapping amide Nâ??CO peaks through 13Câ??15N dipolar dephasing. The sidechain methine (CH) signals of valine, lecuine, and isoleucine are separated from the overlapping methylene (CH2) signals of long-chain amino acids using a multiple-quantum dipolar transfer technique. Both the COO and CH selection methods take advantage of improved dipolar dephasing by asymmetric rotational-echo double resonance (REDOR), where every other Ï?-pulse is shifted from the center of a rotor period tr by about 0.15 tr. This asymmetry produces a deeper minimum in the REDOR dephasing curve and enables complete suppression of the undesired signals of immobile segments. Residual signals of mobile sidechains are positively identified by dynamics editing using recoupled 13Câ??1H dipolar dephasing. In all three experiments, the signals of carbons within a three-bond distance from the selected carbons are detected in the second spectral dimension via 13C spin exchange. The efficiencies of these spectral editing techniques range from 60 % for the COO and dynamic selection experiments to 25 % for the CH selection experiment, and are demonstrated on well-characterized model proteins GB1 and ubiquitin.
  • Content Type Journal Article
  • Category Article
  • Pages 1-11
  • DOI 10.1007/s10858-012-9676-8
  • Authors
    • K. Schmidt-Rohr, Department of Chemistry and Ames Laboratory, Iowa State University, Ames, IA 50011, USA
    • K. J. Fritzsching, Department of Chemistry and Ames Laboratory, Iowa State University, Ames, IA 50011, USA
    • S. Y. Liao, Department of Chemistry and Ames Laboratory, Iowa State University, Ames, IA 50011, USA
    • Mei Hong, Department of Chemistry and Ames Laboratory, Iowa State University, Ames, IA 50011, USA

Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
3D DUMAS: Simultaneous Acquisition of Three-Dimensional Magic Angle Spinning Solid-State NMR Experiments of Proteins
3D DUMAS: Simultaneous Acquisition of Three-Dimensional Magic Angle Spinning Solid-State NMR Experiments of Proteins Publication year: 2012 Source:Journal of Magnetic Resonance</br> T. Gopinath, Gianluigi Veglia</br> Using the DUMAS (Dual acquisition Magic Angle Spinning) solid-state NMR approach, we created new pulse schemes that enable the simultaneous acquisition of three dimensional (3D) experiments on uniformly 13C, 15N labeled proteins. These new experiments exploit the simultaneous cross-polarization (SIM-CP) from 1H to 13C and 15N to acquire two 3D experiments...
nmrlearner Journal club 0 04-26-2012 08:10 PM
Combined Use of Replica-Exchange Molecular Dynamics and Magic-Angle-Spinning Solid-State NMR Spectral Simulations for Determining the Structure and Orientation of Membrane-Bound Peptide.
Combined Use of Replica-Exchange Molecular Dynamics and Magic-Angle-Spinning Solid-State NMR Spectral Simulations for Determining the Structure and Orientation of Membrane-Bound Peptide. Combined Use of Replica-Exchange Molecular Dynamics and Magic-Angle-Spinning Solid-State NMR Spectral Simulations for Determining the Structure and Orientation of Membrane-Bound Peptide. J Phys Chem B. 2011 Jun 13; Authors: Ikeda K, Kameda T, Harada E, Akutsu H, Fujiwara T We report an approach to determining membrane-peptides and -protein complex structures by...
nmrlearner Journal club 0 06-15-2011 01:15 PM
Structure and Interactions of Plant Cell-Wall Polysaccharides by Two- and Three-Dimensional Magic-Angle-Spinning Solid-State NMR
Structure and Interactions of Plant Cell-Wall Polysaccharides by Two- and Three-Dimensional Magic-Angle-Spinning Solid-State NMR http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi101795q/aop/images/medium/bi-2010-01795q_0008.gif Biochemistry DOI: 10.1021/bi101795q http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/9XLFFfb1pRU More...
nmrlearner Journal club 0 01-21-2011 03:31 AM
[NMR paper] Resonance assignments and secondary structure analysis of E. coli thioredoxin by magic angle spinning solid-state NMR spectroscopy.
Resonance assignments and secondary structure analysis of E. coli thioredoxin by magic angle spinning solid-state NMR spectroscopy. Related Articles Resonance assignments and secondary structure analysis of E. coli thioredoxin by magic angle spinning solid-state NMR spectroscopy. J Phys Chem B. 2005 Sep 29;109(38):18135-45 Authors: Marulanda D, Tasayco ML, Cataldi M, Arriaran V, Polenova T De novo site-specific 13C and 15N backbone and sidechain resonance assignments are presented for uniformly enriched E. coli thioredoxin, established using...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. Related Articles Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. J Am Chem Soc. 2005 Sep 21;127(37):12965-74 Authors: Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M It is shown that molecular structure and dynamics of a uniformly labeled membrane protein can be studied under magic-angle-spinning conditions. For this purpose, dipolar recoupling experiments...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscop
Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Related Articles Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature. 2002 Nov 7;420(6911):98-102 Authors: Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H The determination of a representative set of protein structures is a chief aim in structural genomics. Solid-state NMR may have a crucial role in structural investigations of those proteins that do not easily form crystals or are not...
nmrlearner Journal club 0 11-24-2010 08:58 PM
Automated protein resonance assignments of magic angle spinning solid-state NMR spect
Automated protein resonance assignments of magic angle spinning solid-state NMR spectra of β1 immunoglobulin binding domain of protein G (GB1) Abstract Magic-angle spinning solid-state NMR (MAS SSNMR) represents a fast developing experimental technique with great potential to provide structural and dynamics information for proteins not amenable to other methods. However, few automated analysis tools are currently available for MAS SSNMR. We present a methodology for automating protein resonance assignments of MAS SSNMR spectral data and its application to experimental peak lists of the...
nmrlearner Journal club 0 10-15-2010 05:16 PM
Automated protein resonance assignments of magic angle spinning solid-state NMR spect
Automated protein resonance assignments of magic angle spinning solid-state NMR spectra of ?1 immunoglobulin binding domain of protein G (GB1). Related Articles Automated protein resonance assignments of magic angle spinning solid-state NMR spectra of ?1 immunoglobulin binding domain of protein G (GB1). J Biomol NMR. 2010 Oct 8; Authors: Moseley HN, Sperling LJ, Rienstra CM Magic-angle spinning solid-state NMR (MAS SSNMR) represents a fast developing experimental technique with great potential to provide structural and dynamics information for...
nmrlearner Journal club 0 10-12-2010 02:52 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:40 PM.


Map