Spectral editing of alanine, serine, and threonine in uniformly labeled proteins based on frequency-selective homonuclear recoupling in solid-state NMR
Spectral editing of alanine, serine, and threonine in uniformly labeled proteins based on frequency-selective homonuclear recoupling in solid-state NMR
Spectral editing is crucial to simplify the crowded solid-state NMR spectra of proteins. New techniques are introduced to edit 13C-13C correlations of uniformly labeled proteins under moderate magic-angle spinning (MAS), based on our recent frequency-selective homonuclear recoupling sequences [Zhang et al., J. Phys. Chem. Lett. 2020, 11, 8077â??8083]. The signals of alanine, serine, or threonine residues are selected out by selective 13Cα-13Cβ double-quantum filtering (DQF). The 13Cα-13Cβ correlations of alanine residues are selectively established with efficiency up toâ??~â??1.8 times that by dipolar-assisted rotational resonance (DARR). The techniques are shown in 2D/3D NCCX experiments and applied to the uniformly 13C, 15N labeled Aquaporin Z (AqpZ) membrane protein, demonstrating their potential to simplify spectral analyses in biological solid-state NMR.
[NMR paper] Optimization of band-selective homonuclear dipolar recoupling in solid-state NMR by a numerical phase search.
Optimization of band-selective homonuclear dipolar recoupling in solid-state NMR by a numerical phase search.
Related Articles Optimization of band-selective homonuclear dipolar recoupling in solid-state NMR by a numerical phase search.
J Chem Phys. 2019 Apr 21;150(15):154201
Authors: Zhang Z, Liu H, Deng J, Tycko R, Yang J
Abstract
Spin polarization transfers among aliphatic 13C nuclei, especially 13C?-13C? transfers, permit correlations of their nuclear magnetic resonance (NMR) frequencies that are essential for signal...
nmrlearner
Journal club
0
04-22-2019 06:11 PM
[NMR paper] Hidden motions and motion-induced invisibility: dynamics-based spectral editing in solid-state NMR.
Hidden motions and motion-induced invisibility: dynamics-based spectral editing in solid-state NMR.
Related Articles Hidden motions and motion-induced invisibility: dynamics-based spectral editing in solid-state NMR.
Methods. 2018 Apr 24;:
Authors: Matlahov I, van der Wel PCA
Abstract
Solid-state nuclear magnetic resonance (ssNMR) spectroscopy enables the structural characterization of a diverse array of biological assemblies that include amyloid fibrils, non-amyloid aggregates, membrane-associated proteins and viral capsids....
nmrlearner
Journal club
0
04-28-2018 03:16 PM
[NMR paper] Selective excitation for spectral editing and assignment in separated local field experiments of oriented membrane proteins
Selective excitation for spectral editing and assignment in separated local field experiments of oriented membrane proteins
Publication date: January 2017
Source:Journal of Magnetic Resonance, Volume 274</br>
Author(s): Sophie N. Koroloff, Alexander A. Nevzorov</br>
Spectroscopic assignment of NMR spectra for oriented uniformly labeled membrane proteins embedded in their native-like bilayer environment is essential for their structure determination. However, sequence-specific assignment in oriented-sample (OS) NMR is often complicated by insufficient resolution...
nmrlearner
Journal club
0
11-19-2016 08:35 PM
[NMR paper] Aromatic spectral editing techniques for magic-angle-spinning solid-state NMR spectroscopy of uniformly (13)C-labeled proteins.
Aromatic spectral editing techniques for magic-angle-spinning solid-state NMR spectroscopy of uniformly (13)C-labeled proteins.
Aromatic spectral editing techniques for magic-angle-spinning solid-state NMR spectroscopy of uniformly (13)C-labeled proteins.
Solid State Nucl Magn Reson. 2015 Sep 14;
Authors: Williams JK, Schmidt-Rohr K, Hong M
Abstract
The four aromatic amino acids in proteins, namely histidine, phenylalanine, tyrosine, and tryptophan, have strongly overlapping (13)C chemical shift ranges between 100 and 160ppm,...
nmrlearner
Journal club
0
10-07-2015 11:27 AM
Aromatic spectral editing Techniques for magic-Angle-spinning solid-state NMR spectroscopy of uniformly 13C-labeled proteins
Aromatic spectral editing Techniques for magic-Angle-spinning solid-state NMR spectroscopy of uniformly 13C-labeled proteins
Publication date: Available online 14 September 2015
Source:Solid State Nuclear Magnetic Resonance</br>
Author(s): Jonathan K. Williams, Klaus Schmidt-Rohr, Mei Hong</br>
The four aromatic amino acids in proteins, namely histidine, phenylalanine, tyrosine, and tryptophan, give highly overlapped 13C chemical shifts between 100 and 160ppm, and have so far been largely neglected in solid-state NMR determination of protein structures. Yet...
nmrlearner
Journal club
0
09-14-2015 10:42 PM
Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N–15N and carbonyl 13C–13C dipolar recoupling data
Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N–15N and carbonyl 13C–13C dipolar recoupling data
May 2012
Publication year: 2012
Source:Journal of Magnetic Resonance, Volume 218</br>
</br>
Recent structural studies of uniformly 15N, 13C-labeled proteins by solid state nuclear magnetic resonance (NMR) rely principally on two sources of structural restraints: (i) restraints on backbone conformation from isotropic 15N and 13C chemical shifts, based on empirical correlations between chemical shifts and...
nmrlearner
Journal club
0
02-03-2013 10:13 AM
Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N-15N and carbonyl 13C-13C dipolar recoupling data
Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N-15N and carbonyl 13C-13C dipolar recoupling data
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
Kan-Nian Hu, Wei Qiang, Guillermo A. Bermejo, Charles D. Schwieters, Robert Tycko</br>
Recent structural studies of uniformly 15N,13C-labeled proteins by solid state nuclear magnetic resonance (NMR) rely principally on two sources of structural restraints: (i) restraints on backbone conformation from isotropic 15N and 13C chemical...
nmrlearner
Journal club
0
03-10-2012 10:54 AM
Radio frequency assisted homonuclear recoupling - A Floquet description of homonuclear recoupling via surrounding heteronuclei in fully protonated to fully deuterated systems
Radio frequency assisted homonuclear recoupling - A Floquet description of homonuclear recoupling via surrounding heteronuclei in fully protonated to fully deuterated systems
Publication year: 2011
Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 18 January 2011</br>
Michal, Leskes , Ümit, Akbey , Hartmut, Oschkinat , Barth-Jan, van Rossum , Shimon, Vega</br>
We present a Floquet theory approach for the analysis of homonuclear recoupling assisted by radio frequency (RF) irradiation of surrounding heteronuclear spins. This description covers a...