BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 01-18-2021, 07:42 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Specificity of Molecular Fragments Binding to S100B versus S100A1 as Identified by NMR and Site Identification by Ligand Competitive Saturation (SILCS).

Specificity of Molecular Fragments Binding to S100B versus S100A1 as Identified by NMR and Site Identification by Ligand Competitive Saturation (SILCS).

Related Articles Specificity of Molecular Fragments Binding to S100B versus S100A1 as Identified by NMR and Site Identification by Ligand Competitive Saturation (SILCS).

Molecules. 2021 Jan 13;26(2):

Authors: Young BD, Yu W, Rodríguez DJV, Varney KM, MacKerell AD, Weber DJ

Abstract
S100B, a biomarker of malignant melanoma, interacts with the p53 protein and diminishes its tumor suppressor function, which makes this S100 family member a promising therapeutic target for treating malignant melanoma. However, it is a challenge to design inhibitors that are specific for S100B in melanoma versus other S100-family members that are important for normal cellular activities. For example, S100A1 is most similar in sequence and structure to S100B, and this S100 protein is important for normal skeletal and cardiac muscle function. Therefore, a combination of NMR and computer aided drug design (CADD) was used to initiate the design of specific S100B inhibitors. Fragment-based screening by NMR, also termed "SAR by NMR," is a well-established method, and was used to examine spectral perturbations in 2D [1H, 15N]-HSQC spectra of Ca2+-bound S100B and Ca2+-bound S100A1, side-by-side, and under identical conditions for comparison. Of the 1000 compounds screened, two were found to be specific for binding Ca2+-bound S100A1 and four were found to be specific for Ca2+-bound S100B, respectively. The NMR spectral perturbations observed in these six data sets were then used to model how each of these small molecule fragments showed specificity for one S100 versus the other using a CADD approach termed Site Identification by Ligand Competitive Saturation (SILCS). In summary, the combination of NMR and computational approaches provided insight into how S100A1 versus S100B bind small molecules specifically, which will enable improved drug design efforts to inhibit elevated S100B in melanoma. Such a fragment-based approach can be used generally to initiate the design of specific inhibitors for other highly homologous drug targets.


PMID: 33450915 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Identification of Ligand-Receptor Interactions: Ligand Molecular Arrays, SPR and NMR Methodologies.
Identification of Ligand-Receptor Interactions: Ligand Molecular Arrays, SPR and NMR Methodologies. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles Identification of Ligand-Receptor Interactions: Ligand Molecular Arrays, SPR and NMR Methodologies. Methods Mol Biol. 2017;1512:51-63 Authors: Day CJ, Hartley-Tassell LE, Korolik V Abstract Despite many years of research into bacterial chemotaxis, the only well characterized system...
nmrlearner Journal club 0 01-11-2018 04:07 PM
[NMR paper] Identification of Hydrophobic Interfaces in Protein-Ligand Complexes by Selective Saturation Transfer NMR Spectroscopy.
Identification of Hydrophobic Interfaces in Protein-Ligand Complexes by Selective Saturation Transfer NMR Spectroscopy. Related Articles Identification of Hydrophobic Interfaces in Protein-Ligand Complexes by Selective Saturation Transfer NMR Spectroscopy. Molecules. 2015;20(12):21992-9 Authors: Ferrage F, Dutta K, Cowburn D Abstract The proper characterization of protein-ligand interfaces is essential for structural biology, with implications ranging from the fundamental understanding of biological processes to pharmacology....
nmrlearner Journal club 0 12-28-2015 12:26 AM
[NMR paper] Identification of the binding site of an allosteric ligand using STD-NMR, docking, and CORCEMA-ST calculations.
Identification of the binding site of an allosteric ligand using STD-NMR, docking, and CORCEMA-ST calculations. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary_FullTextOnline_120x27.gif http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary_FullTextOnline_120x27.gif http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.ncbi.nlm.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc-MS.gif Related Articles Identification of the binding...
nmrlearner Journal club 0 10-27-2015 12:33 PM
[NMR paper] Unique Structure and Dynamics of the EphA5 Ligand Binding Domain Mediate Its Binding Specificity as Revealed by X-ray Crystallography, NMR and MD Simulations.
Unique Structure and Dynamics of the EphA5 Ligand Binding Domain Mediate Its Binding Specificity as Revealed by X-ray Crystallography, NMR and MD Simulations. Unique Structure and Dynamics of the EphA5 Ligand Binding Domain Mediate Its Binding Specificity as Revealed by X-ray Crystallography, NMR and MD Simulations. PLoS One. 2013;8(9):e74040 Authors: Huan X, Shi J, Lim L, Mitra S, Zhu W, Qin H, Pasquale EB, Song J Abstract The 16 EphA and EphB receptors represent the largest family of receptor tyrosine kinases, and their interactions...
nmrlearner Journal club 0 10-03-2013 03:31 PM
Binding site identification and structure determination of protein-ligand complexes by NMR a semiautomated approach.
Binding site identification and structure determination of protein-ligand complexes by NMR a semiautomated approach. Binding site identification and structure determination of protein-ligand complexes by NMR a semiautomated approach. Methods Enzymol. 2011;493:241-75 Authors: Ziarek JJ, Peterson FC, Lytle BL, Volkman BF Over the last 15years, the role of NMR spectroscopy in the lead identification and optimization stages of pharmaceutical drug discovery has steadily increased. NMR occupies a unique niche in the biophysical analysis of drug-like...
nmrlearner Journal club 0 03-05-2011 01:02 PM
[NMR paper] Epitope mapping and competitive binding of HSA drug site II ligands by NMR diffusion
Epitope mapping and competitive binding of HSA drug site II ligands by NMR diffusion measurements. Related Articles Epitope mapping and competitive binding of HSA drug site II ligands by NMR diffusion measurements. J Am Chem Soc. 2004 Nov 3;126(43):14258-66 Authors: Lucas LH, Price KE, Larive CK It is important to characterize drug-albumin binding during drug discovery and lead optimization as strong binding may reduce bioavailability and/or increase the drug's in vivo half-life. Despite knowing about the location of human serum albumin (HSA)...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] Design of a functional protein for molecular recognition: specificity of ligand bindi
Design of a functional protein for molecular recognition: specificity of ligand binding in a metal-assembled protein cavity probed by 19f NMR. Related Articles Design of a functional protein for molecular recognition: specificity of ligand binding in a metal-assembled protein cavity probed by 19f NMR. J Am Chem Soc. 2004 Apr 7;126(13):4192-8 Authors: Doerr AJ, Case MA, Pelczer I, McLendon GL A metal-assembled homotrimeric coiled coil based on the GCN4-p1 sequence has been designed that noncovalently binds hexafluorobenzene and other similar...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Location of the Zn(2+)-binding site on S100B as determined by NMR spectroscopy and si
Location of the Zn(2+)-binding site on S100B as determined by NMR spectroscopy and site-directed mutagenesis. Related Articles Location of the Zn(2+)-binding site on S100B as determined by NMR spectroscopy and site-directed mutagenesis. Biochemistry. 2003 Nov 25;42(46):13410-21 Authors: Wilder PT, Baldisseri DM, Udan R, Vallely KM, Weber DJ In addition to binding Ca(2+), the S100 protein S100B binds Zn(2+) with relatively high affinity as confirmed using isothermal titration calorimetry (ITC; K(d) = 94 +/- 17 nM). The Zn(2+)-binding site on...
nmrlearner Journal club 0 11-24-2010 09:16 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:02 AM.


Map