Related ArticlesSpatial localization of ligand binding sites from electron current density surfaces calculated from NMR chemical shift perturbations.
J Am Chem Soc. 2002 Oct 2;124(39):11758-63
Authors: McCoy MA, Wyss DF
Rapid, accurate structure determination of protein-ligand complexes is an essential component in structure-based drug design. We have developed a method that uses NMR protein chemical shift perturbations to spatially localize a ligand when it is complexed with a protein. Chemical shift perturbations on the protein arise primarily from the close proximity of electron current density from the ligand. In our approach the location of the center of the electron current density for a ligand aromatic ring was approximated by a point-dipole, and dot densities were used to represent ligand positions that are allowed by the experimental data. The dot density is increased in the region of space that is consistent for the most data. A surface can be formed in regions of the highest dot density that correlates to the center of the ligand aromatic ring. These surfaces allow for the rapid evaluation of ligand binding, which is demonstrated on a model system and on real data from HCV NS3 protease and HCV NS3 helicase, where the location of ligand binding can be compared to that obtained from difference electron density from X-ray crystallography.
[NMR paper] Gated electron transfers and electron pathways in azurin: a NMR dynamic study at mult
Gated electron transfers and electron pathways in azurin: a NMR dynamic study at multiple fields and temperatures.
Related Articles Gated electron transfers and electron pathways in azurin: a NMR dynamic study at multiple fields and temperatures.
J Mol Biol. 2004 Oct 1;342(5):1599-611
Authors: Zhuravleva AV, Korzhnev DM, Kupce E, Arseniev AS, Billeter M, Orekhov VY
Dynamic properties of electron transfer pathways in a small blue copper cupredoxin are explored using an extensive 15N NMR relaxation study of reduced Pseudomonas aeruginosa azurin...
nmrlearner
Journal club
0
11-24-2010 10:01 PM
[NMR paper] Metal-ligand interactions in perturbed blue copper sites: a paramagnetic (1)H NMR stu
Metal-ligand interactions in perturbed blue copper sites: a paramagnetic (1)H NMR study of Co(II)-pseudoazurin.
Related Articles Metal-ligand interactions in perturbed blue copper sites: a paramagnetic (1)H NMR study of Co(II)-pseudoazurin.
J Biol Inorg Chem. 2003 Jan;8(1-2):75-82
Authors: Fernández CO, Niizeki T, Kohzuma T, Vila AJ
Pseudoazurin is an electron transfer copper protein, a member of the cupredoxin family. The protein is frequently found in denitrifying bacteria, where it is the electron donor of nitrite reductase. The copper at...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] Axial ligand modulation of the electronic structures of binuclear copper sites: analy
Axial ligand modulation of the electronic structures of binuclear copper sites: analysis of paramagnetic 1H NMR spectra of Met160Gln Cu(A).
Related Articles Axial ligand modulation of the electronic structures of binuclear copper sites: analysis of paramagnetic 1H NMR spectra of Met160Gln Cu(A).
J Am Chem Soc. 2001 Nov 28;123(47):11678-85
Authors: Fernández CO, Cricco JA, Slutter CE, Richards JH, Gray HB, Vila AJ
Cu(A) is an electron-transfer copper center present in heme-copper oxidases and N2O reductases. The center is a binuclear unit, with...
nmrlearner
Journal club
0
11-19-2010 08:44 PM
[NMR paper] Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein
Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange.
Biochemistry. 1997 Feb 25;36(8):2278-90
Authors: Hodsdon ME, Cistola DP
The backbone dynamics of the liganded (holo) and unliganded (apo) forms of Escherichia...
nmrlearner
Journal club
0
08-22-2010 03:31 PM
[NMR paper] Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein
Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange.
Biochemistry. 1997 Feb 25;36(8):2278-90
Authors: Hodsdon ME, Cistola DP
The backbone dynamics of the liganded (holo) and unliganded (apo) forms of Escherichia...
nmrlearner
Journal club
0
08-22-2010 03:03 PM
[NMR paper] An investigation of the ligand-binding site of the glutamine-binding protein of Esche
An investigation of the ligand-binding site of the glutamine-binding protein of Escherichia coli using rotational-echo double-resonance NMR.
Related Articles An investigation of the ligand-binding site of the glutamine-binding protein of Escherichia coli using rotational-echo double-resonance NMR.
Biochemistry. 1994 Jul 26;33(29):8651-61
Authors: Hing AW, Tjandra N, Cottam PF, Schaefer J, Ho C
Glutamine-binding protein (GlnBP) is an essential component of the glutamine transport system in Escherichia coli. Rotational-echo double-resonance...