SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of
Abstract NMR chemical shifts provide important local structural information for proteins and are key in recently described protein structure generation protocols. We describe a new chemical shift prediction program, SPARTA+, which is based on artificial neural networking. The neural network is trained on a large carefully pruned database, containing 580 proteins for which high-resolution X-ray structures and nearly complete backbone and 13Cβ chemical shifts are available. The neural network is trained to establish quantitative relations between chemical shifts and protein structures, including backbone and side-chain conformation, H-bonding, electric fields and ring-current effects. The trained neural network yields rapid chemical shift prediction for backbone and 13Cβ atoms, with standard deviations of 2.45, 1.09, 0.94, 1.14, 0.25 and 0.49 ppm for δ15N, δ13Câ??, δ13Cα, δ13Cβ, δ1Hα and δ1HN, respectively, between the SPARTA+ predicted and experimental shifts for a set of eleven validation proteins. These results represent a modest but consistent improvement (2â??10%) over the best programs available to date, and appear to be approaching the limit at which empirical approaches can predict chemical shifts.
Content Type Journal Article
DOI 10.1007/s10858-010-9433-9
Authors
Yang Shen, National Institutes of Health Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases Building 5, room 126, NIH Bethesda MD 20892-0520 USA
Ad Bax, National Institutes of Health Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases Building 5, room 126, NIH Bethesda MD 20892-0520 USA
Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction
Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction
Abstract While chemical shifts are invaluable for obtaining structural information from proteins, they also offer one of the rare ways to obtain information about protein dynamics. A necessary tool in transforming chemical shifts into structural and dynamic information is chemical shift prediction. In our previous work we developed a method for 4D prediction of protein 1H chemical shifts in which molecular motions, the...
nmrlearner
Journal club
0
02-11-2012 10:31 AM
SHIFTX2: Chemical Shift Prediction
SHIFTX2 website
SHIFTX2 is capable of rapidly and accurately calculating diamagnetic 1H, 13C and 15N chemical shifts from protein coordinate data. Compared to its predecessor (SHIFTX) and to other existing protein chemical shift prediction programs, SHIFTX2 is substantially more accurate (up to 26% better by correlation coefficient with an RMS error that is up to 3.3× smaller) than the next best performing program. It also provides significantly more coverage (up to 10% more), is significantly faster (up to 8.5×) and capable of calculating a wider variety of backbone and side chain...
gwnmr
NMR software
0
01-10-2012 06:13 PM
Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field
Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field
Publication year: 2011
Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 23 May 2011</br>
Jakob T., Nielsen , Hamid R., Eghbalnia , Niels Chr., Nielsen</br>
The exquisite sensitivity of chemical shifts as reporters of structural information, and the ability to measure them routinely and accurately, gives great import to formulations that elucidate the structure-chemical-shift relationship. Here we...
nmrlearner
Journal club
0
05-24-2011 10:02 PM
SHIFTX2: significantly improved protein chemical shift prediction
SHIFTX2: significantly improved protein chemical shift prediction
Abstract A new computer program, called SHIFTX2, is described which is capable of rapidly and accurately calculating diamagnetic 1H, 13C and 15N chemical shifts from protein coordinate data. Compared to its predecessor (SHIFTX) and to other existing protein chemical shift prediction programs, SHIFTX2 is substantially more accurate (up to 26% better by correlation coefficient with an RMS error that is up to 3.3Ã? smaller) than the next best performing program. It also provides significantly more coverage (up to 10% more),...
nmrlearner
Journal club
0
04-01-2011 09:31 PM
Fluorine-Protein Interactions and (19)F NMR Isotropic Chemical Shifts: An Empirical Correlation with Implications for Drug Design.
Fluorine-Protein Interactions and (19)F NMR Isotropic Chemical Shifts: An Empirical Correlation with Implications for Drug Design.
Related Articles Fluorine-Protein Interactions and (19)F NMR Isotropic Chemical Shifts: An Empirical Correlation with Implications for Drug Design.
ChemMedChem. 2010 Nov 29;
Authors: Dalvit C, Vulpetti A
An empirical correlation between the fluorine isotropic chemical shifts, measured by (19)F NMR spectroscopy, and the type of fluorine-protein interactions observed in crystal structures is presented. The CF, CF(2), and...
nmrlearner
Journal club
0
12-01-2010 04:41 PM
[Question from NMRWiki Q&A forum] How to plot chemical shift predictions obtained form SPARTA?
How to plot chemical shift predictions obtained form SPARTA?
Dear friends,
I had a mutation in my protein and now I have some amino acids around mutation remained unassigned. To get a way to find the missing peaks I modelled the mutated protein with modeller and out of the pdb file I got the chemical shift predictions using SPARTA. Now that I have chemical shift predictions I want to plot them like a spectra and overlay them to my real spectra to see if it will help me to assign some of the missing peaks. I know for solid-state NMR there is a software, but what about solution NMR?
...
nmrlearner
News from other NMR forums
0
11-18-2010 06:16 PM
Protein secondary structure prediction using NMR chemical shift data.
Protein secondary structure prediction using NMR chemical shift data.
Related Articles Protein secondary structure prediction using NMR chemical shift data.
J Bioinform Comput Biol. 2010 Oct;8(5):867-84
Authors: Zhao Y, Alipanahi B, Li SC, Li M
Accurate determination of protein secondary structure from the chemical shift information is a key step for NMR tertiary structure determination. Relatively few work has been done on this subject. There needs to be a systematic investigation of algorithms that are (a) robust for large datasets; (b)...
nmrlearner
Journal club
0
10-29-2010 07:05 PM
Chemical shift prediction in random coil peptides
Please check this program and let me know if it does work for your random coil peptides.
http://bloch.anu.edu.au/cgi-bin/shiftpred/shiftpred.cgi
Thank you,
Bogdan Bancia
bbancia@yahoo.com