Unambiguous detection and assignment of intermolecular NOEs are essential for structure determination of protein complexes by NMR. Such information has traditionally been obtained with 3-D half-filtered experiments, where scalar coupling-based purging of intramolecular signals allows for selective detection of intermolecular NOEs. However, due to the large variation of 1JHC scalar couplings and limited chemical shift dispersion in the indirect proton dimension, it is difficult to obtain reliable and complete assignments of interfacial NOEs. Here, we demonstrate a strategy that combines selective labeling and high-resolution 4-D NOE spectroscopy with sparse sampling for reliable identification and assignment of intermolecular NOEs. Spectral subtraction of component-labeled complexes from a uniformly-labeled protein complex yields an ā??omitā?? spectrum containing positive intermolecular NOEs with little signal degeneracy. Such a strategy can be broadly applied to unbiased detection, assignment and presentation of intermolecular NOEs of protein complexes.
TSAR: a program for automatic resonance assignment using 2D cross-sections of high dimensionality, high-resolution spectra
TSAR: a program for automatic resonance assignment using 2D cross-sections of high dimensionality, high-resolution spectra
Abstract While NMR studies of proteins typically aim at structure, dynamics or interactions, resonance assignments represent in almost all cases the initial step of the analysis. With increasing complexity of the NMR spectra, for example due to decreasing extent of ordered structure, this task often becomes both difficult and time-consuming, and the recording of high-dimensional data with high-resolution may be essential. Random sampling of the evolution time space,...
nmrlearner
Journal club
0
07-20-2012 11:13 PM
High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins
High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins
Abstract Four novel 5D (HACA(N)CONH, HNCOCACB, (HACA)CON(CA)CONH, (H)NCO(NCA)CONH), and one 6D ((H)NCO(N)CACONH) NMR pulse sequences are proposed. The new experiments employ non-uniform sampling that enables achieving high resolution in indirectly detected dimensions. The experiments facilitate resonance assignment of intrinsically disordered proteins. The novel pulse sequences were successfully tested using Ī“ subunit (20 kDa) of Bacillus subtilis RNA polymerase...
nmrlearner
Journal club
0
02-21-2012 03:40 AM
Sparsely-sampled High-resolution 4-D Experiments for Efficient Backbone Resonance Assignment of Disordered Proteins
Sparsely-sampled High-resolution 4-D Experiments for Efficient Backbone Resonance Assignment of Disordered Proteins
Publication year: 2011
Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 4 January 2011</br>
Jie, Wen , Jihui, Wu , Pei, Zhou</br>
Intrinsically disordered proteins (IDPs) play important roles in many critical cellular processes. Due to their limited chemical shift dispersion, IDPs often require four pairs of resonance connectivities (H?, C?, C? and CO) for establishing sequential backbone assignment. Because most conventional 4-D...
nmrlearner
Journal club
0
01-05-2011 11:03 AM
Simultaneous Detection of Protein Phosphorylation and Acetylation by High-Resolution
Simultaneous Detection of Protein Phosphorylation and Acetylation by High-Resolution NMR Spectroscopy.
Simultaneous Detection of Protein Phosphorylation and Acetylation by High-Resolution NMR Spectroscopy.
J Am Chem Soc. 2010 Oct 1;
Authors: Liokatis S, Dose A, Schwarzer D, Selenko P
Post-translational protein modifications (PTMs) such as phosphorylation and acetylation regulate a large number of eukaryotic signaling processes. In most instances, it is the combination of different PTMs that "encode" the biological outcome of these covalent...
nmrlearner
Journal club
0
10-05-2010 12:11 PM
Simultaneous Detection of Protein Phosphorylation and Acetylation by High-Resolution
Simultaneous Detection of Protein Phosphorylation and Acetylation by High-Resolution NMR Spectroscopy
Stamatios Liokatis, Alexander Dose, Dirk Schwarzer and Philipp Selenko
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja106764y/aop/images/medium/ja-2010-06764y_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja106764y
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/jfhp2Sg-hpY
nmrlearner
Journal club
0
10-02-2010 12:16 AM
[NMR paper] Tools for the automated assignment of high-resolution three-dimensional protein NMR s
Tools for the automated assignment of high-resolution three-dimensional protein NMR spectra based on pattern recognition techniques.
Tools for the automated assignment of high-resolution three-dimensional protein NMR spectra based on pattern recognition techniques.
J Biomol NMR. 1997 Oct;10(3):207-19
Authors: Croft D, Kemmink J, Neidig KP, Oschkinat H
One of the major bottlenecks in the determination of proteinstructures by NMR is in the evaluation of the data produced by theexperiments. An important step in this process is assignment, where...
nmrlearner
Journal club
0
08-22-2010 05:08 PM
[Question from NMRWiki Q&A forum] Varian Biopack pulse sequences for intermolecular NOEs
Varian Biopack pulse sequences for intermolecular NOEs
Hi All, I'm trying to set up some experiments to determine intermolecular NOEs in a peptide:protein complex. At the moment from looking at the Biopack library, I have found 4 pulse sequences which will do this and each provide different information (gnoesyNhsqc_CN, gnoesyNhsqc_NN, gnoesyChsqc_CC and gnoesyChsqc_NC). Would people recommend using a combination of all four of these experiments to determine the intermolecular NOEs for use in structure calculations?
Check if somebody has answered this question on NMRWiki QA forum