We present the results of studies of an aqueous sample of a highly [15N,2H] enriched protein, the SH3 domain from Fyn. Measurements of 1H relaxation and interactions between H2O solvent and exchangeable protons are given, as well as a method for increasing the effective longitudinal relaxation of solvent exchangeable proton resonances. The long-range isotope shifts are measured, for 1H and 15N, which arise due to perdeuteration. Simulations, which employed a 7 or 8 spin relaxation matrix analysis, were compared to the experimental data from a time series of 2D NOESY datasets for some resonances. The agreement between experiment and simulation suggest that, with this 1H dilute sample, relatively long mixing times (up to 1.2 s) can be used to detect specific dipolar interactions between amide protons up to about 7A apart. A set of 155 inter-amide NOEs and 7 side chain NOEs were thus identified in a series of 3D HSQC-NOESY-HSQC experiments. These data, alone and in combination with previously collected restraints, were used to calculate sets of structures using X-PLOR. These results are compared to the available X-ray and NMR structures of the Fyn SH3 domain.
Structure and Dynamics of the A?21–30 Peptide from the Interplay of NMR Experiments and Molecular Simulations
Structure and Dynamics of the A?21–30 Peptide from the Interplay of NMR Experiments and Molecular Simulations
Nicolas L. Fawzi, Aaron H. Phillips, Jory Z. Ruscio, Michaeleen Doucleff, David E. Wemmer and Teresa Head-Gordon
Journal of the American Chemical Society
DOI: 10.1021/ja204315n
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/bEQEah_ik60
nmrlearner
Journal club
0
07-09-2011 07:11 AM
Chemical shift correlation at high MAS frequencies employing low-power symmetry-based mixing schemes
Chemical shift correlation at high MAS frequencies employing low-power symmetry-based mixing schemes
Abstract An approach for conveniently implementing low-power CN n ν and RN n ν symmetry-based band-selective mixing sequences for generating homo- and heteronuclear chemical shift correlation NMR spectra of low γ nuclei in biological solids is demonstrated. Efficient magnetisation transfer characteristics are achieved by selecting appropriate symmetries requiring the application of basic RF elements of relatively long duration and numerically tailoring the RF field modulation profile...
nmrlearner
Journal club
0
06-20-2011 03:31 PM
Fully automated high-quality NMR structure determination of small (2)H-enriched prote
Fully automated high-quality NMR structure determination of small (2)H-enriched proteins.
Related Articles Fully automated high-quality NMR structure determination of small (2)H-enriched proteins.
J Struct Funct Genomics. 2010 Aug 24;
Authors: Tang Y, Schneider WM, Shen Y, Raman S, Inouye M, Baker D, Roth MJ, Montelione GT
Determination of high-quality small protein structures by nuclear magnetic resonance (NMR) methods generally requires acquisition and analysis of an extensive set of structural constraints. The process generally demands...
nmrlearner
Journal club
0
08-25-2010 02:04 PM
[NMR paper] Secondary structure of human interleukin 2 from 3D heteronuclear NMR experiments.
Secondary structure of human interleukin 2 from 3D heteronuclear NMR experiments.
Related Articles Secondary structure of human interleukin 2 from 3D heteronuclear NMR experiments.
Biochemistry. 1992 Aug 25;31(33):7741-4
Authors: Mott HR, Driscoll PC, Boyd J, Cooke RM, Weir MP, Campbell ID
Recombinant 15N-labeled human interleukin 2 (IL-2) has been studied by 2D and 3D NMR using uniformly 15N-labeled protein. Assignment of the backbone resonances has enabled the secondary structure of the protein to be defined. The secondary structure was...
nmrlearner
Journal club
0
08-21-2010 11:45 PM
[NMR paper] NMR studies of structure and dynamics of isotope enriched proteins.
NMR studies of structure and dynamics of isotope enriched proteins.
Related Articles NMR studies of structure and dynamics of isotope enriched proteins.
Biopolymers. 1992 Apr;32(4):381-90
Authors: Wagner G, Thanabal V, Stockman BJ, Peng JW, Nirmala NR, Hyberts SG, Goldberg MS, Detlefsen DJ, Clubb RT, Adler M
Structural studies of globular proteins by nmr can be enhanced by the use of isotope enrichment. We have been working with proteins enriched with 15N, and with both 15N and 13C. Due to the isotope enrichment we could assign several large...
nmrlearner
Journal club
0
08-21-2010 11:41 PM
[NMR paper] Synthesis of isotope labeled oligonucleotides and their use in an NMR study of a prot
Synthesis of isotope labeled oligonucleotides and their use in an NMR study of a protein-DNA complex.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Synthesis of isotope labeled oligonucleotides and their use in an NMR study of a protein-DNA complex.
Nucleic Acids Res. 1992 Feb 25;20(4):653-7
Authors: Kellenbach ER, Remerowski ML, Eib D, Boelens R, van der Marel GA, van den Elst H, van Boom JH, Kaptein R
The synthesis of an oligonucleotide labeled with 13C...
nmrlearner
Journal club
0
08-21-2010 11:41 PM
[NMR paper] Assessing potential bias in the determination of rotational correlation times of prot
Assessing potential bias in the determination of rotational correlation times of proteins by NMR relaxation.
Related Articles Assessing potential bias in the determination of rotational correlation times of proteins by NMR relaxation.
J Biomol NMR. 1999 Feb;13(2):101-12
Authors: Lee AL, Wand AJ
The various factors that influence the reliable and efficient determination of the correlation time describing molecular reorientation of proteins by NMR relaxation methods are examined. Nuclear Overhauser effects, spin-lattice, and spin-spin relaxation...
nmrlearner
Journal club
0
08-21-2010 04:03 PM
Nitrogen-detected CAN and CON experiments as alternative experiments for main chain N
Abstract Heteronuclear direct-detection experiments, which utilize the slower relaxation properties of low γ nuclei, such as 13C have recently been proposed for sequence-specific assignment and structural analyses of large, unstructured, and/or paramagnetic proteins. Here we present two novel 15N direct-detection experiments. The CAN experiment sequentially connects amide 15N resonances using 13Cα chemical shift matching, and the CON experiment connects the preceding 13C� nuclei. When starting from the same carbon polarization, the intensities of nitrogen signals detected in the CAN or...