Publication year: 2010 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 25 January 2010
Gang, Zheng , William S., Price
Suppression of sampling artefacts in high-resolution four-dimensional NMR spectra using Signal Separation Algorithm
Suppression of sampling artefacts in high-resolution four-dimensional NMR spectra using Signal Separation Algorithm
Publication year: 2011
Source: Journal of Magnetic Resonance, Available online 20 October 2011</br>
Jan*Stanek, Rafal*Augustyniak, Wiktor*Ko?mi?ski</br>
The development of non-uniform sampling (NUS) strategies permits to obtain high-dimensional spectra with increased resolution in significantly reduced experimental time. We extended a previously proposed signal separation algorithm (SSA) to process sparse four-dimensional NMR data. It is employed for two experiments...
Simultaneous convection compensation and solvent suppression in biomolecular NMR diffusion experiments
Simultaneous convection compensation and solvent suppression in biomolecular NMR diffusion experiments
Abstract Thermal convection and high intensity solvent resonances can significantly hamper diffusion estimates in pulsed gradient spin-echo nuclear magnetic resonance diffusion experiments on biomolecule samples. To overcome these two problems, a new double functional NMR diffusion sequence, double echo PGSTE-WATERGATE, is presented. The new sequence provides excellent convection compensation and solvent suppression (with a suppression factor in excess of at least 105 in a single scan)...
nmrlearner
Journal club
0
01-09-2011 12:46 PM
[NMR paper] 1H, 15N, and 13C NMR signal assignments of IIIGlc, a signal-transducing protein of Es
1H, 15N, and 13C NMR signal assignments of IIIGlc, a signal-transducing protein of Escherichia coli, using three-dimensional triple-resonance techniques.
Related Articles 1H, 15N, and 13C NMR signal assignments of IIIGlc, a signal-transducing protein of Escherichia coli, using three-dimensional triple-resonance techniques.
Biochemistry. 1991 Oct 15;30(41):10043-57
Authors: Pelton JG, Torchia DA, Meadow ND, Wong CY, Roseman S
IIIGlc is an 18.1-kDa signal-transducing phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase...
nmrlearner
Journal club
0
08-21-2010 11:12 PM
[NMR paper] 1H, 15N, and 13C NMR signal assignments of IIIGlc, a signal-transducing protein of Es
1H, 15N, and 13C NMR signal assignments of IIIGlc, a signal-transducing protein of Escherichia coli, using three-dimensional triple-resonance techniques.
Related Articles 1H, 15N, and 13C NMR signal assignments of IIIGlc, a signal-transducing protein of Escherichia coli, using three-dimensional triple-resonance techniques.
Biochemistry. 1991 Oct 15;30(41):10043-57
Authors: Pelton JG, Torchia DA, Meadow ND, Wong CY, Roseman S
IIIGlc is an 18.1-kDa signal-transducing phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase...
nmrlearner
Journal club
0
08-21-2010 11:12 PM
[U. of Ottawa NMR Facility Blog] Background Suppression in Liquids
Background Suppression in Liquids
High resolution NMR probes for liquids may contain parts near the coil consiting of the nuclei being observed. The parts give rise to background signals which can severely affect the NMR data. When observing11B, there is a background signal from boron containing parts near the coil and also the borosilicate glass in the NMR tube containing the sample.
Cory and Ritchey* introduced a very simple, clever method to suppress background signals in 1988. Their method uses a composite pulse, consisting of a 90° and two 180° pulses with appropriate phase...