[NMR paper] Solvent and H/D Isotope Effects on the Proton Transfer Pathways in Heteroconjugated Hydrogen-Bonded Phenol-Carboxylic Acid Anions Observed by Combined UV-Vis and NMR Spectroscopy.
Solvent and H/D Isotope Effects on the Proton Transfer Pathways in Heteroconjugated Hydrogen-Bonded Phenol-Carboxylic Acid Anions Observed by Combined UV-Vis and NMR Spectroscopy.
Related ArticlesSolvent and H/D Isotope Effects on the Proton Transfer Pathways in Heteroconjugated Hydrogen-Bonded Phenol-Carboxylic Acid Anions Observed by Combined UV-Vis and NMR Spectroscopy.
Abstract
Heteroconjugated hydrogen-bonded anions A...H...X- of phenols (AH) and carboxylic/inorganic acids (HX) dissolved in CD2Cl2 and CDF3/CDF2Cl have been studied by combined low-temperature UV-Vis and 1H/13C NMR spectroscopy (UVNMR). The systems constitute small molecular models of hydrogen-bonded cofactors in proteins such as the photoactive yellow protein (PYP). Thus, the phenols studied include the PYP cofactor 4-hydroxycinnamic acid methyl thioester, and the more acidic 4-nitrophenol and 2-chloro-4-nitrophenol which mimic electronically excited cofactor states. It is shown that the 13C chemical shifts of the phenolic residues of A...H...X-, referenced to the corresponding values of A...H...A-, constitute excellent probes for the average proton positions. These shifts correlate with those of the H-bonded protons, as well as with the H/D isotope effects on the 13C chemical shifts. A combined analysis of UV-Vis and NMR data was employed to elucidate the proton transfer pathways in a qualitative way. Dual absorption bands of the phenolic moiety indicate a double-well situation for the shortest OHO hydrogen bonds studied. Surprisingly, when the solvent polarity is low the carboxylates are protonated whereas the proton shifts towards the phenolic oxygens when the polarity is increased. This finding indicates that because of stronger ion-dipole interactions small anions are stabilized at high solvent polarities and large anions exhibiting delocalized charges at low solvent polarities. It also explains the large acidity difference of phenols and carboxylic acids in water, and the observation that this differences is strongly reduced in the interior of proteins when both partners form mutual hydrogen bonds.
PMID: 23607931 [PubMed - as supplied by publisher]
[U. of Ottawa NMR Facility Blog] Isotope Effects and the 19F - 13C HMQC Spectrum of Trifluoroacetic Acid
Isotope Effects and the 19F - 13C HMQC Spectrum of Trifluoroacetic Acid
The 19F - 13C HMQC spectrum of trifluoroacetic acid is shown in the figure below.
http://4.bp.blogspot.com/-roN1Zav9lO8/UIWplTlt8WI/AAAAAAAAA-o/G0N2j7vkqns/s400/tfa1.jpg
The data were collected with a delay appropriate for a 19F - 13C J coupling constant between the 1JF-C coupling constant of 284 Hz and the 2JF-C coupling constant of 44 Hz. The top and side traces are the one-pulse 19F and 13C spectra, respectively. Why are the HMQC responses not at the same 19F chemical shift and why aren't they correlated...
nmrlearner
News from NMR blogs
0
10-22-2012 09:07 PM
Reaction Pathways of Proton Transfer in Hydrogen-Bonded Phenol–Carboxylate Complexes Explored by Combined UV–Vis and NMR Spectroscopy
Reaction Pathways of Proton Transfer in Hydrogen-Bonded Phenol–Carboxylate Complexes Explored by Combined UV–Vis and NMR Spectroscopy
Benjamin Koeppe, Peter M. Tolstoy and Hans-Heinrich Limbach
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja201113a/aop/images/medium/ja-2011-01113a_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja201113a
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/QUQwn6dGPs4
nmrlearner
Journal club
0
05-03-2011 05:18 AM
[NMR paper] Proton-transfer effects in the active-site region of Escherichia coli thioredoxin usi
Proton-transfer effects in the active-site region of Escherichia coli thioredoxin using two-dimensional 1H NMR.
Related Articles Proton-transfer effects in the active-site region of Escherichia coli thioredoxin using two-dimensional 1H NMR.
Biochemistry. 1991 Apr 30;30(17):4262-8
Authors: Dyson HJ, Tennant LL, Holmgren A
A series of two-dimensional (2D) correlated 1H NMR spectra of reduced and oxidized Escherichia coli thioredoxin have been used to probe the effects of pH in the vicinity of the active site, -Cys32-Gly-Pro-Cys35-, using the...