[NMR paper] Solvent-Driven Dynamical Cross-Over in the Phenylalanine Side-Chain from the Hydrophobic Core of Amyloid Fibrils Detected by (2)H NMR Relaxation.
Related ArticlesSolvent-Driven Dynamical Cross-Over in the Phenylalanine Side-Chain from the Hydrophobic Core of Amyloid Fibrils Detected by (2)H NMR Relaxation.
Abstract
Aromatic residues are important markers of dynamical changes in proteins' hydrophobic cores. In this work we investigated the dynamics of the F19 side-chain in the core of amyloid fibrils across a wide temperature range of 300 to 140 K. We utilized solid-state 2H NMR relaxation to demonstrate the presence of a solvent-driven dynamical cross-over between different motional regimes, often also referred to as the dynamical transition. In particular, the dynamics are dominated by small-angle fluctuations at low temperatures and by ?-flips of the aromatic ring at high temperatures. The cross-over temperature is more than 43 degrees lower for the hydrated state of the fibrils compared to the dry state, indicating that interactions with water facilitate ?-flips. Further, cross-over temperatures are shown to be very sensitive to polymorphic states of the fibrils, such as the 2-fold and 3-fold symmetric morphologies of the wild-type protein as well as D23N mutant protofibrils. We speculate that these differences can be attributed, at least partially, to enhanced interactions with water in the 3-fold polymorph, which has been shown to have a water-accessible cavity. Combined with previous studies of methyl group dynamics, the results highlight the presence of multiple dynamics modes in the core of the fibrils, which was originally believed to be quite rigid.
PMID: 28699757 [PubMed - as supplied by publisher]
[NMR paper] NMR Spectroscopic Assignment of Backbone and Side-Chain Protons in Fully Protonated Proteins: Microcrystals, Sedimented Assemblies, and Amyloid Fibrils.
NMR Spectroscopic Assignment of Backbone and Side-Chain Protons in Fully Protonated Proteins: Microcrystals, Sedimented Assemblies, and Amyloid Fibrils.
NMR Spectroscopic Assignment of Backbone and Side-Chain Protons in Fully Protonated Proteins: Microcrystals, Sedimented Assemblies, and Amyloid Fibrils.
Angew Chem Int Ed Engl. 2016 Nov 16;:
Authors: Stanek J, Andreas LB, Jaudzems K, Cala D, Lalli D, Bertarello A, Schubeis T, Akopjana I, Kotelovica S, Tars K, Pica A, Leone S, Picone D, Xu ZQ, Dixon NE, Martinez D, Berbon M, El Mammeri N, Noubhani...
nmrlearner
Journal club
0
11-20-2016 09:20 PM
[NMR paper] Dynamics of Hydrophobic Core Phenylalanine Residues Probed by Solid-State Deuteron NMR.
Dynamics of Hydrophobic Core Phenylalanine Residues Probed by Solid-State Deuteron NMR.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Dynamics of Hydrophobic Core Phenylalanine Residues Probed by Solid-State Deuteron NMR.
J Phys Chem B. 2015 Nov 3;
Authors: Vugmeyster L, Ostrovsky D, Villafranca TR, Sharp J, Xu W, Lipton AS, Hoatson GL, Vold RL
Abstract
We conducted a detailed investigation of the dynamics of two phenylalanine side chains in the...
nmrlearner
Journal club
0
11-09-2015 02:00 AM
[NMR paper] Polyglutamine amyloid core boundaries and flanking domain dynamics in huntingtin fragment fibrils determined by solid-state NMR.
Polyglutamine amyloid core boundaries and flanking domain dynamics in huntingtin fragment fibrils determined by solid-state NMR.
Related Articles Polyglutamine amyloid core boundaries and flanking domain dynamics in huntingtin fragment fibrils determined by solid-state NMR.
Biochemistry. 2014 Oct 3;
Authors: Hoop CL, Lin HK, Kar K, Hou Z, Poirier MA, Wetzel R, van der Wel PC
Abstract
In Huntington's Disease (HD), expansion of a polyglutamine (polyQ) domain in the huntingtin (htt) protein leads to misfolding and aggregation....
nmrlearner
Journal club
0
10-04-2014 05:16 PM
A Studyof Phenylalanine Side-Chain Dynamics in Surface-AdsorbedPeptides Using Solid-State Deuterium NMR and Rotamer Library Statistics
A Studyof Phenylalanine Side-Chain Dynamics in Surface-AdsorbedPeptides Using Solid-State Deuterium NMR and Rotamer Library Statistics
Kun Li, Prashant S. Emani, Jason Ash, Michael Groves and Gary P. Drobny
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja504677d/aop/images/medium/ja-2014-04677d_0008.gif
Journal of the American Chemical Society
DOI: 10.1021/ja504677d
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/d2WMAZNh-I4
nmrlearner
Journal club
0
08-06-2014 07:59 AM
[NMR paper] A Study of Phenylalanine Side Chain Dynamics in Surface-Adsorbed Peptides Using Solid State Deuterium NMR and Rotamer Library Statistics.
A Study of Phenylalanine Side Chain Dynamics in Surface-Adsorbed Peptides Using Solid State Deuterium NMR and Rotamer Library Statistics.
A Study of Phenylalanine Side Chain Dynamics in Surface-Adsorbed Peptides Using Solid State Deuterium NMR and Rotamer Library Statistics.
J Am Chem Soc. 2014 Jul 23;
Authors: Li K, Emani PS, Ash J, Groves M, Drobny GP
Abstract
Extracellular matrix proteins adsorbed onto mineral surfaces exist in a unique environment where the structure and dynamics of the protein can be altered...
nmrlearner
Journal club
0
07-24-2014 11:56 AM
The Core of Ure2p Prion Fibrils Is Formed by the N-Terminal Segment in a Parallel Cross-? Structure: Evidence from Solid-State NMR.
The Core of Ure2p Prion Fibrils Is Formed by the N-Terminal Segment in a Parallel Cross-? Structure: Evidence from Solid-State NMR.
The Core of Ure2p Prion Fibrils Is Formed by the N-Terminal Segment in a Parallel Cross-? Structure: Evidence from Solid-State NMR.
J Mol Biol. 2011 Apr 8;
Authors: Kryndushkin DS, Wickner RB, Tycko R
Intracellular fibril formation by Ure2p produces the non-Mendelian genetic element in Saccharomyces cerevisiae, making Ure2p a prion protein. We show that solid-state NMR spectra of full-length Ure2p fibrils, seeded...
nmrlearner
Journal club
0
04-19-2011 11:01 PM
Side chain: backbone projections in aromatic and ASX residues from NMR cross-correlated relaxation
Side chain: backbone projections in aromatic and ASX residues from NMR cross-correlated relaxation
Abstract The measurements of cross-correlated relaxation rates between HNā??N and CĪ²ā??CĪ³ intraresidual and sequential dipolar interactions is demonstrated in ASN, ASP and aromatic residues. The experiment can be used for deuterated samples and no additional knowledge such as Karplus parametrizations is required for the analysis. The data constitutes a new type of information since no other method relates the CĪ²ā??CĪ³ bond to HNā??N. Using this method the dominant populations of rotamer...
nmrlearner
Journal club
0
01-09-2011 12:46 PM
[NMR paper] Probing solvent accessibility of amyloid fibrils by solution NMR spectroscopy.
Probing solvent accessibility of amyloid fibrils by solution NMR spectroscopy.
Related Articles Probing solvent accessibility of amyloid fibrils by solution NMR spectroscopy.
Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8648-53
Authors: Ippel JH, Olofsson A, Schleucher J, Lundgren E, Wijmenga SS
Amyloid is the result of an anomalous protein and peptide aggregation, leading to the formation of insoluble fibril deposits. At present, 18 human diseases have been associated with amyloid deposits-e.g., Alzheimer's disease and Prion-transmissible...