BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-03-2013, 10:19 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Solution structure of the Big domain from Streptococcus pneumoniae reveals a novel Ca(2+)-binding module.

Solution structure of the Big domain from Streptococcus pneumoniae reveals a novel Ca(2+)-binding module.

Related Articles Solution structure of the Big domain from Streptococcus pneumoniae reveals a novel Ca(2+)-binding module.

Sci Rep. 2013;3:1079

Authors: Wang T, Zhang J, Zhang X, Xu C, Tu X

Abstract
Streptococcus pneumoniae is a pathogen causing acute respiratory infection, otitis media and some other severe diseases in human. In this study, the solution structure of a bacterial immunoglobulin-like (Big) domain from a putative S. pneumoniae surface protein SP0498 was determined by NMR spectroscopy. SP0498 Big domain adopts an eight-?-strand barrel-like fold, which is different in some aspects from the two-sheet sandwich-like fold of the canonical Ig-like domains. Intriguingly, we identified that the SP0498 Big domain was a Ca(2+) binding domain. The structure of the Big domain is different from those of the well known Ca(2+) binding domains, therefore revealing a novel Ca(2+)-binding module. Furthermore, we identified the critical residues responsible for the binding to Ca(2+). We are the first to report the interactions between the Big domain and Ca(2+) in terms of structure, suggesting an important role of the Big domain in many essential calcium-dependent cellular processes such as pathogenesis.


PMID: 23326635 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Solution Structure, Dynamics and Binding Studies of a Family 11 Carbohydrate-Binding Module from Clostridium thermocellum (CtCBM11).
Solution Structure, Dynamics and Binding Studies of a Family 11 Carbohydrate-Binding Module from Clostridium thermocellum (CtCBM11). Related Articles Solution Structure, Dynamics and Binding Studies of a Family 11 Carbohydrate-Binding Module from Clostridium thermocellum (CtCBM11). Biochem J. 2013 Jan 29; Authors: Viegas A, Sardinha J, Freire F, Duarte DF, Carvalho AL, Fontes CM, Romão MJ, Macedo AL, Cabrita EJ Abstract Non-catalytic cellulosomal carbohydrate-binding modules (CBMs) are responsible for increasing the catalytic efficiency of...
nmrlearner Journal club 0 02-03-2013 10:19 AM
NMR structure note: solution structure of Ca2+ binding domain 2B of the third isoform of the Na+/Ca2+ exchanger
NMR structure note: solution structure of Ca2+ binding domain 2B of the third isoform of the Na+/Ca2+ exchanger NMR structure note: solution structure of Ca2+ binding domain 2B of the third isoform of the Na+/Ca2+ exchanger Content Type Journal Article Category NMR structure note Pages 1-7 DOI 10.1007/s10858-012-9654-1 Authors
nmrlearner Journal club 0 07-20-2012 11:13 PM
Solution NMR structure of VF0530 from Vibrio fischeri reveals a nucleic acid-binding function.
Solution NMR structure of VF0530 from Vibrio fischeri reveals a nucleic acid-binding function. Solution NMR structure of VF0530 from Vibrio fischeri reveals a nucleic acid-binding function. Proteins. 2011 Oct;79(10):2988-91 Authors: Aramini JM, Rossi P, Fischer M, Xiao R, Acton TB, Montelione GT Abstract Protein domain family PF09905 (DUF2132) is a family of small domains of unknown function that are conserved in a wide range of bacteria. Here we describe the solution NMR structure of the 80-residue VF0530 protein from Vibrio fischeri,...
nmrlearner Journal club 0 09-10-2011 06:51 PM
NMR Structure and Calcium-Binding Properties of the Tellurite Resistance Protein TerD from Klebsiella pneumoniae.
NMR Structure and Calcium-Binding Properties of the Tellurite Resistance Protein TerD from Klebsiella pneumoniae. NMR Structure and Calcium-Binding Properties of the Tellurite Resistance Protein TerD from Klebsiella pneumoniae. J Mol Biol. 2010 Nov 25; Authors: Pan YR, Lou YC, Seven AB, Rizo J, Chen C The tellurium oxyanion, TeO(3)(2-), has been used in the treatment of infectious diseases caused by mycobacteria. However, many pathogenic bacteria show tellurite resistance. Several tellurite resistance genes have been identified, and these genes...
nmrlearner Journal club 0 11-30-2010 08:14 PM
[NMR paper] NMR solution structure of a peptide from the mdm-2 binding domain of the p53 protein
NMR solution structure of a peptide from the mdm-2 binding domain of the p53 protein that is selectively cytotoxic to cancer cells. Related Articles NMR solution structure of a peptide from the mdm-2 binding domain of the p53 protein that is selectively cytotoxic to cancer cells. Biochemistry. 2004 Feb 24;43(7):1854-61 Authors: Rosal R, Pincus MR, Brandt-Rauf PW, Fine RL, Michl J, Wang H We have recently found that a peptide from the mdm-2 binding domain of the p53 protein induced rapid membranolytic necrosis of a variety of different human...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] NMR solution structure of the receptor binding domain of human alpha(2)-macroglobulin
NMR solution structure of the receptor binding domain of human alpha(2)-macroglobulin. Related Articles NMR solution structure of the receptor binding domain of human alpha(2)-macroglobulin. J Biol Chem. 2000 Jan 14;275(2):1089-94 Authors: Huang W, Dolmer K, Liao X, Gettins PG Human alpha(2)-macroglobulin-proteinase complexes bind to their receptor, the low density lipoprotein receptor-related protein (LRP), through a discrete 138-residue C-terminal receptor binding domain (RBD), which also binds to the beta-amyloid peptide. We have used NMR...
nmrlearner Journal club 0 11-18-2010 09:15 PM
[NMR paper] NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain:
NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain: a preview of chaperone-protein interaction. Related Articles NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain: a preview of chaperone-protein interaction. Biochemistry. 1998 Jun 2;37(22):7929-40 Authors: Wang H, Kurochkin AV, Pang Y, Hu W, Flynn GC, Zuiderweg ER The solution structure of the 21 kDa substrate-binding domain of the Escherichia coli Hsp70-chaperone protein DnaK (DnaK 386-561) has been determined to a precision...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] Solution structure of the LexA repressor DNA binding domain determined by 1H NMR spec
Solution structure of the LexA repressor DNA binding domain determined by 1H NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Solution structure of the LexA repressor DNA binding domain determined by 1H NMR spectroscopy. EMBO J. 1994 Sep 1;13(17):3936-44 Authors: Fogh RH, Ottleben G, Rüterjans H, Schnarr M, Boelens R, Kaptein R The structure of the 84 residue DNA binding domain of the Escherichia coli LexA repressor has been determined from...
nmrlearner Journal club 0 08-22-2010 03:29 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:02 PM.


Map