BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-22-2010, 05:08 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Solution secondary structure of a bacterially expressed peptide from the receptor bin

Solution secondary structure of a bacterially expressed peptide from the receptor binding domain of Pseudomonas aeruginosa pili strain PAK: A heteronuclear multidimensional NMR study.

Related Articles Solution secondary structure of a bacterially expressed peptide from the receptor binding domain of Pseudomonas aeruginosa pili strain PAK: A heteronuclear multidimensional NMR study.

Biochemistry. 1997 Oct 21;36(42):12791-801

Authors: Campbell AP, Bautista DL, Tripet B, Wong WY, Irvin RT, Hodges RS, Sykes BD

The C-terminal receptor binding region of Pseudomonas aeruginosa pilin protein strain PAK (residues 128-144) has recently been the target for the design of a synthetic peptide vaccine effective against multiple strains of P. aeruginosa infection. We have successfully cloned and bacterially expressed a 15N-labeled PAK pilin peptide spanning residues 128-144 of the intact PAK pilin protein, PAK 128-144(Hs145), and have determined the solution secondary structure of this peptide using heteronuclear multidimensional NMR spectroscopy. The oxidized recombinant peptide exists as a major (trans) and minor (cis) species in solution, arising from isomerization around the Ile138-Pro139 peptide bond. The pattern of NOEs, temperature coefficients, and coupling constants observed for the trans isomer demonstrate the presence of a type I beta-turn and a type II beta-turn spanning Asp134-Glu-Gln-Phe137 and Pro139-Lys-Gly-Cys142, respectively. This is in agreement with the NMR solution structure of the trans isomer of a synthetic PAK 128-144 peptide which showed a type I and a type II beta-turn in these same regions of the sequence [McInnes, C., Sönnichsen, F. D., Kay, C. M., Hodges, R. S., and Sykes, B. D. (1993) Biochemistry 32, 13432-13440; Campbell, A. P., McInnes, C., Hodges, R. S., and Sykes, B. D. (1995) Biochemistry 34, 16255-16268]. The pattern of NOEs, temperature coefficients, and coupling constants observed for the cis isomer also demonstrate a type II beta-turn spanning Pro139-Lys-Gly-Cys142, but suggest a second beta-turn spanning Asp132-Gln-Asp-Glu135. Thus, the cis isomer may also possess a double-turn motif (like the trans isomer), but with different spacing between the turns and a different placement of the first turn in the sequence. The discovery of a double-turn motif in the trans (and cis) recombinant PAK pilin peptide is an extremely important result since the double turn has been implicated as a structural requirement for the recognition of both receptor and antibody. These results pave the way for future isotope-edited NMR studies of the labeled recombinant PAK pilin peptide bound to antibody and receptor, studies integral to the design of an effective synthetic peptide vaccine.

PMID: 9335536 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] NMR screening and crystal quality of bacterially expressed prokaryotic and eukaryotic
NMR screening and crystal quality of bacterially expressed prokaryotic and eukaryotic proteins in a structural genomics pipeline. Related Articles NMR screening and crystal quality of bacterially expressed prokaryotic and eukaryotic proteins in a structural genomics pipeline. Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):1901-5 Authors: Page R, Peti W, Wilson IA, Stevens RC, Wüthrich K In the Joint Center for Structural Genomics, one-dimensional (1D) 1H NMR spectroscopy is routinely used to characterize the folded state of protein targets and,...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] NMR structure and dynamics of a receptor-active apolipoprotein E peptide.
NMR structure and dynamics of a receptor-active apolipoprotein E peptide. Related Articles NMR structure and dynamics of a receptor-active apolipoprotein E peptide. J Biol Chem. 2002 Aug 9;277(32):29172-80 Authors: Raussens V, Slupsky CM, Ryan RO, Sykes BD Apolipoprotein E (apoE) is important in lipid metabolism due to its interaction with members of the low density lipoprotein (LDL) receptor family. ApoE is able to interact with the LDL receptor only when it is bound to lipid particles. To address structural aspects of this phenomenon, a...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Backbone dynamics of a bacterially expressed peptide from the receptor binding domain
Backbone dynamics of a bacterially expressed peptide from the receptor binding domain of Pseudomonas aeruginosa pilin strain PAK from heteronuclear 1H-15N NMR spectroscopy. Related Articles Backbone dynamics of a bacterially expressed peptide from the receptor binding domain of Pseudomonas aeruginosa pilin strain PAK from heteronuclear 1H-15N NMR spectroscopy. J Biomol NMR. 2000 Jul;17(3):239-55 Authors: Campbell AP, Spyracopoulos L, Irvin RT, Sykes BD The backbone dynamics of a 15N-labeled recombinant PAK pilin peptide spanning residues...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] NMR solution structure of the receptor binding domain of human alpha(2)-macroglobulin
NMR solution structure of the receptor binding domain of human alpha(2)-macroglobulin. Related Articles NMR solution structure of the receptor binding domain of human alpha(2)-macroglobulin. J Biol Chem. 2000 Jan 14;275(2):1089-94 Authors: Huang W, Dolmer K, Liao X, Gettins PG Human alpha(2)-macroglobulin-proteinase complexes bind to their receptor, the low density lipoprotein receptor-related protein (LRP), through a discrete 138-residue C-terminal receptor binding domain (RBD), which also binds to the beta-amyloid peptide. We have used NMR...
nmrlearner Journal club 0 11-18-2010 09:15 PM
[NMR paper] Studies on solution NMR structure of brazzein : Secondary structure and molecular sca
Studies on solution NMR structure of brazzein : Secondary structure and molecular scaffold. Related Articles Studies on solution NMR structure of brazzein : Secondary structure and molecular scaffold. Sci China C Life Sci. 1999 Aug;42(4):409-19 Authors: Gao G, Dai J, Ding M, Hellekant G, Wang J, Wang D Brazzein is a sweet-tasting protein isolated from the fruit of West African plantPentadiplandra brazzeana Baillon. It is the smallest and the most water-soluble sweet protein discovered so far and is highly thermostable. The proton NMR study of...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] Proton NMR sequence-specific assignments and secondary structure of a receptor bindin
Proton NMR sequence-specific assignments and secondary structure of a receptor binding domain of mouse gamma-interferon. Related Articles Proton NMR sequence-specific assignments and secondary structure of a receptor binding domain of mouse gamma-interferon. Biochemistry. 1993 Jun 1;32(21):5650-5 Authors: Sakai TT, Jablonsky MJ, DeMuth PA, Krishna NR, Jarpe MA, Johnson HM Previous studies using synthetic peptides and monoclonal antibodies have implicated the N-terminal 39-residue segment as a receptor binding region of mouse gamma-interferon...
nmrlearner Journal club 0 08-21-2010 11:53 PM
[NMR paper] NMR structure of a receptor-bound G-protein peptide.
NMR structure of a receptor-bound G-protein peptide. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.nature.com-images-lo_nature.gif Related Articles NMR structure of a receptor-bound G-protein peptide. Nature. 1993 May 20;363(6426):276-81 Authors: Dratz EA, Furstenau JE, Lambert CG, Thireault DL, Rarick H, Schepers T, Pakhlevaniants S, Hamm HE Heterotrimeric GTP-binding proteins (G proteins) regulate cellular activity by coupling to hormone or sensory receptors. Stimulated receptors catalyse the release of GDP from G protein...
nmrlearner Journal club 0 08-21-2010 11:53 PM
[NMR paper] Secondary structure and topology of interleukin-1 receptor antagonist protein determi
Secondary structure and topology of interleukin-1 receptor antagonist protein determined by heteronuclear three-dimensional NMR spectroscopy. Related Articles Secondary structure and topology of interleukin-1 receptor antagonist protein determined by heteronuclear three-dimensional NMR spectroscopy. Biochemistry. 1992 Jun 16;31(23):5237-45 Authors: Stockman BJ, Scahill TA, Roy M, Ulrich EL, Strakalaitis NA, Brunner DP, Yem AW, Deibel MR Interleukin-1 (IL-1) proteins, such as IL-1 beta, play a key role in immune and inflammatory responses....
nmrlearner Journal club 0 08-21-2010 11:41 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:02 PM.


Map