A Solution NMR Study of the Interactions of Oligomannosides and the Anti-HIV-1 2G12 Antibody Reveals Distinct Binding Modes for Branched Ligands*
Chemistry. 2011 Jan 5;
Authors: Enríquez-Navas PM, Marradi M, Padro D, Angulo J, Penadés S
The structural and affinity details of the interactions of synthetic oligomannosides, linear (di-, tri-, and tetra-) and branched (penta- and hepta-), with the broadly neutralizing anti-HIV-1 antibody 2G12 (HIV=human immunodeficiency virus) have been investigated in solution by using ligand-based NMR techniques, specifically saturation transfer difference (STD) NMR spectroscopy and transferred NOE experiments. Linear oligomannosides show similar binding modes to the antibody, with the nonreducing terminal disaccharide Man?(1->2)Man (Man=mannose) making the closest protein/ligand contacts in the bound state. In contrast, the branched pentamannoside shows two alternate binding modes, involving both ligand arms (D2- and D3-like), a dual binding description of the molecular recognition of this ligand by 2G12 in solution that differs from the single binding mode deduced from X-ray studies. On the contrary, the antibody shows an unexpected selectivity for one arm (D1-like) of the other branched ligand (heptamannoside). This result explains the previously reported lack of affinity enhancement relative to that of the D1-like tetramannoside. Single-ligand STD NMR titration experiments revealed noticeable differences in binding affinities among the linear and branched ligands in solution, with the latter showing decreased affinity. Among the analyzed series of ligands, the strongest 2G12 binders were the linear tri- and tetramannosides because both show similar affinity for the antibody. These results demonstrate that NMR spectroscopic techniques can deliver abundant structural, dynamics, and affinity information for the characterization of oligomannose-2G12 binding in solution, thus complementing, and, as in the case of the pentamannoside, extending, the structural view from X-ray crystallography. This information is of key importance for the development of multivalent synthetic gp120 high-mannose glycoconjugate mimics in the context of vaccine development.
PMID: 21207541 [PubMed - as supplied by publisher]
Solution NMR structure of VF0530 from Vibrio fischeri reveals a nucleic acid-binding function.
Solution NMR structure of VF0530 from Vibrio fischeri reveals a nucleic acid-binding function.
Solution NMR structure of VF0530 from Vibrio fischeri reveals a nucleic acid-binding function.
Proteins. 2011 Oct;79(10):2988-91
Authors: Aramini JM, Rossi P, Fischer M, Xiao R, Acton TB, Montelione GT
Abstract
Protein domain family PF09905 (DUF2132) is a family of small domains of unknown function that are conserved in a wide range of bacteria. Here we describe the solution NMR structure of the 80-residue VF0530 protein from Vibrio fischeri,...
nmrlearner
Journal club
0
09-10-2011 06:51 PM
Structure and lipid interactions of an anti-inflammatory and anti-atherogenic 10-residue class G(*) apolipoprotein J peptide using solution NMR.
Structure and lipid interactions of an anti-inflammatory and anti-atherogenic 10-residue class G(*) apolipoprotein J peptide using solution NMR.
Structure and lipid interactions of an anti-inflammatory and anti-atherogenic 10-residue class G(*) apolipoprotein J peptide using solution NMR.
Biochim Biophys Acta. 2011 Jan;1808(1):498-507
Authors: Mishra VK, Palgunachari MN, Hudson JS, Shin R, Keenum TD, Krishna NR, Anantharamaiah GM
The surprising observation that a 10-residue class G(?) peptide from apolipoprotein J, apoJ, possesses...
nmrlearner
Journal club
0
03-08-2011 01:40 PM
A Solution NMR Study of the Interactions of Oligomannosides and the Anti-HIV-1 2G12 Antibody Reveals Distinct Binding Modes for Branched Ligands*
A Solution NMR Study of the Interactions of Oligomannosides and the Anti-HIV-1 2G12 Antibody Reveals Distinct Binding Modes for Branched Ligands*
A Solution NMR Study of the Interactions of Oligomannosides and the Anti-HIV-1 2G12 Antibody Reveals Distinct Binding Modes for Branched Ligands*
Chemistry. 2011 Feb 1;17(5):1547-1560
Authors: Enríquez-Navas PM, Marradi M, Padro D, Angulo J, Penadés S
The structural and affinity details of the interactions of synthetic oligomannosides, linear (di-, tri-, and tetra-) and branched (penta- and hepta-),...
nmrlearner
Journal club
0
01-27-2011 02:52 PM
[NMR paper] A combined STD-NMR/molecular modeling protocol for predicting the binding modes of th
A combined STD-NMR/molecular modeling protocol for predicting the binding modes of the glycosidase inhibitors kifunensine and salacinol to Golgi alpha-mannosidase II.
Related Articles A combined STD-NMR/molecular modeling protocol for predicting the binding modes of the glycosidase inhibitors kifunensine and salacinol to Golgi alpha-mannosidase II.
Biochemistry. 2005 May 10;44(18):6729-37
Authors: Wen X, Yuan Y, Kuntz DA, Rose DR, Pinto BM
A combined STD-NMR/molecular modeling protocol to probe the binding modes of the glycosidase inhibitors...
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] Epitope mapping of gibberellin to the anti-gibberellin A(4) monoclonal antibody by sa
Epitope mapping of gibberellin to the anti-gibberellin A(4) monoclonal antibody by saturation transfer difference NMR spectroscopy.
Related Articles Epitope mapping of gibberellin to the anti-gibberellin A(4) monoclonal antibody by saturation transfer difference NMR spectroscopy.
Biochem Biophys Res Commun. 2003 Aug 1;307(3):498-502
Authors: Murata T, Hemmi H, Nakajima M, Yoshida M, Yamaguchi I
Saturation transfer difference (STD) NMR spectroscopy is a promising tool for rapid screening, identifying ligands that interact with a target protein,...
nmrlearner
Journal club
0
11-24-2010 09:16 PM
[NMR paper] Multisite and multivalent binding between cyanovirin-N and branched oligomannosides:
Multisite and multivalent binding between cyanovirin-N and branched oligomannosides: calorimetric and NMR characterization.
Related Articles Multisite and multivalent binding between cyanovirin-N and branched oligomannosides: calorimetric and NMR characterization.
Chem Biol. 2002 Oct;9(10):1109-18
Authors: Shenoy SR, Barrientos LG, Ratner DM, O'Keefe BR, Seeberger PH, Gronenborn AM, Boyd MR
Binding of the protein cyanovirin-N to oligomannose-8 and oligomannose-9 of gp120 is crucially involved in its potent virucidal activity against the human...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] NMR structure of an anti-gp120 antibody complex with a V3 peptide reveals a surface i
NMR structure of an anti-gp120 antibody complex with a V3 peptide reveals a surface important for co-receptor binding.
Related Articles NMR structure of an anti-gp120 antibody complex with a V3 peptide reveals a surface important for co-receptor binding.
Structure. 2000 Apr 15;8(4):385-95
Authors: Tugarinov V, Zvi A, Levy R, Hayek Y, Matsushita S, Anglister J
BACKGROUND: The protein 0.5beta is a potent strain-specific human immunodeficiency virus type 1 (HIV-1) neutralizing antibody raised against the entire envelope glycoprotein (gp120) of...
nmrlearner
Journal club
0
11-18-2010 09:15 PM
[NMR paper] NMR studies of interactions of ligands with dihydrofolate reductase.
NMR studies of interactions of ligands with dihydrofolate reductase.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR studies of interactions of ligands with dihydrofolate reductase.
Biochem Pharmacol. 1990 Jul 1;40(1):141-52
Authors: Feeney J
NMR spectroscopy is a useful technique for studying interactions, conformations and dynamic processes within ligand-protein complexes. Several examples of the application of the method to studies of complexes of anti-folate...