BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-20-2018, 10:11 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Solution NMR structure of yeast Rcf1, a protein involved in respiratory supercomplex formation [Biophysics and Computational Biology]

Solution NMR structure of yeast Rcf1, a protein involved in respiratory supercomplex formation [Biophysics and Computational Biology]

Shu Zhou, Pontus Pettersson, Jingȷing Huang, Johannes Sȷoholm, Dan Sȷostrand, Regis Pomes, Martin Hogbom, Peter Brzezinski, Lena Maler, Pia Adelroth...
Date: 2018-03-20

The Saccharomyces cerevisiae respiratory supercomplex factor 1 (Rcf1) protein is located in the mitochondrial inner membrane where it is involved in formation of supercomplexes composed of respiratory complexes III and IV. We report the solution structure of Rcf1, which forms a dimer in dodecylphosphocholine (DPC) micelles, where each monomer consists... Read More


PNAS:
Number: 12
Volume: 115
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Solution NMR structure of yeast Rcf1, a protein involved in respiratory supercomplex formation.
Solution NMR structure of yeast Rcf1, a protein involved in respiratory supercomplex formation. Related Articles Solution NMR structure of yeast Rcf1, a protein involved in respiratory supercomplex formation. Proc Natl Acad Sci U S A. 2018 Mar 05;: Authors: Zhou S, Pettersson P, Huang J, Sjöholm J, Sjöstrand D, Pomès R, Högbom M, Brzezinski P, Mäler L, Ädelroth P Abstract The Saccharomyces cerevisiae respiratory supercomplex factor 1 (Rcf1) protein is located in the mitochondrial inner membrane where it is involved in...
nmrlearner Journal club 0 03-07-2018 08:27 PM
Combining DNP NMR with segmental and specific labeling to study a yeast prion protein strain that is not parallel in-register [Biophysics and Computational Biology]
Combining DNP NMR with segmental and specific labeling to study a yeast prion protein strain that is not parallel in-register Kendra K. Frederick, Vladimir K. Michaelis, Marc A. Caporini, Loren B. Andreas, Galia T. Debelouchina, Robert G. Griffin, Susan Lindquist... Date: 2017-04-04 The yeast prion protein Sup35NM is a self-propagating amyloid. Despite intense study, there is no consensus on the organization of monomers within Sup35NM fibrils. Some studies point to a ?-helical arrangement, whereas others suggest a parallel in-register organization. Intermolecular contacts are often...
nmrlearner Journal club 0 04-04-2017 10:41 PM
ssNMR structure of helical filaments [Biophysics and Computational Biology]
ssNMR structure of helical filaments He, L., Bardiaux, B., Ahmed, M., Spehr, J., Konig, R., Lunsdorf, H., Rand, U., Luhrs, T., Ritter, C.... Date: 2016-01-19 The controlled formation of filamentous protein complexes plays a crucial role in many biological systems and represents an emerging paradigm in signal transduction. The mitochondrial antiviral signaling protein (MAVS) is a central signal transduction hub in innate immunity that is activated by a receptor-induced conversion into helical superstructures (filaments) assembled... Read More PNAS: Number: 3
nmrlearner Journal club 0 01-20-2016 09:01 AM
Structure of CAP-Gly on microtubules by MAS NMR [Biophysics and Computational Biology]
Structure of CAP-Gly on microtubules by MAS NMR Yan, S., Guo, C., Hou, G., Zhang, H., Lu, X., Williams, J. C., Polenova, T.... Date: 2015-11-24 Microtubules and their associated proteins perform a broad array of essential physiological functions, including mitosis, polarization and differentiation, cell migration, and vesicle and organelle transport. As such, they have been extensively studied at multiple levels of resolution (e.g., from structural biology to cell biology). Despite these efforts, there remain significant... Read More PNAS: Number: 47
nmrlearner Journal club 0 11-24-2015 09:32 PM
Class II preQ1 riboswitch NMR structure [Biophysics and Computational Biology]
Class II preQ1 riboswitch NMR structure Kang, M., Eichhorn, C. D., Feigon, J.... Date: 2014-02-11 Prequeuosine (preQ1) riboswitches are RNA regulatory elements located in the 5? UTR of genes involved in the biosynthesis and transport of preQ1, a precursor of the modified base queuosine universally found in four tRNAs. The preQ1 class II (preQ1-II) riboswitch regulates preQ1 biosynthesis at the translational level. We present the... Read More PNAS: Number: 6
nmrlearner Journal club 0 02-11-2014 09:58 PM
Allosteric effects in c-Abl by solution NMR [Biophysics and Computational Biology]
Allosteric effects in c-Abl by solution NMR Skora, L., Mestan, J., Fabbro, D., Jahnke, W., Grzesiek, S.... Date: 2013-11-19 Successful treatment of chronic myelogenous leukemia is based on inhibitors binding to the ATP site of the deregulated breakpoint cluster region (Bcr)–Abelson tyrosine kinase (Abl) fusion protein. Recently, a new type of allosteric inhibitors targeting the Abl myristoyl pocket was shown in preclinical studies to overcome ATP-site inhibitor resistance arising... Read More PNAS: Number: 47
nmrlearner Journal club 0 11-20-2013 12:42 AM
Cu-SOD structure and dynamics by solid-state NMR [Biophysics and Computational Biology]
Cu-SOD structure and dynamics by solid-state NMR Knight, M. J., Pell, A. J., Bertini, I., Felli, I. C., Gonnelli, L., Pierattelli, R., Herrmann, T., Emsley, L., Pintacuda, G.... Date: 2012-07-10 We introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with 1H detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and sensitive acquisition of an extensive set of 15N and 13C nuclear relaxation rates. The system on which we demonstrate these methods is the...
nmrlearner Journal club 0 07-10-2012 06:01 PM
Protein structure modeling using sparse NMR data [Biophysics and Computational Biology]
Protein structure modeling using sparse NMR data Thompson, J. M., Sgourakis, N. G., Liu, G., Rossi, P., Tang, Y., Mills, J. L., Szyperski, T., Montelione, G. T., Baker, D.... Date: 2012-06-19 While information from homologous structures plays a central role in X-ray structure determination by molecular replacement, such information is rarely used in NMR structure determination because it can be incorrect, both locally and globally, when evolutionary relationships are inferred incorrectly or there has been considerable evolutionary structural divergence. Here we describe a method that...
nmrlearner Journal club 0 06-20-2012 02:28 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:58 AM.


Map