Solution NMR Structure and Functional Analysis of the Integral Membrane Protein YgaP from E. coli.
J Biol Chem. 2014 Jun 23;
Authors: Eichmann C, Tzitzilonis C, Bordignon E, Maslennikov I, Choe S, Riek R
Abstract
The solution NMR structure of the ?-helical integral membrane protein YgaP from Escherichia coli in mixed DHPC-7/LMPG micelles is presented. In these micelles, YgaP forms a homo-dimer with the two transmembrane helices being the dimer interface, while the N-terminal cytoplasmic domain comprises a rhodanese fold in accordance to its sequence homology to the rhodanese family of sulfurtransferases. The enzymatic sulfur-transfer activity of full-length YgaP as well as of the N-terminal rhodanese domain only was investigated performing series of titrations with sodium thiosulfate and potassium cyanide monitored by NMR and EPR. The data indicate the thiosulfate concentration-dependent addition of several sulfur atoms to the catalytic Cys63, which process can be reversed by the addition of potassium cyanide. The catalytic reaction induces thereby conformational changes within the rhodanese domain, as well as on the transmembrane ?-helices of YgaP. These results provide insights into a potential mechanism of YgaP during the catalytic thiosulfate activity in vivo.
PMID: 24958726 [PubMed - as supplied by publisher]
Solution NMR study of integral membrane proteins.
Solution NMR study of integral membrane proteins.
Solution NMR study of integral membrane proteins.
Curr Opin Chem Biol. 2011 Jun 18;
Authors: Kang C, Li Q
Signals between a cell and its environment are often transmitted through membrane proteins; therefore, many membrane proteins, including G protein-coupled receptors (GPCRs) and ion channels, are important drug targets. Structural information about membrane proteins remains limited owing to challenges in protein expression, purification and the selection of membrane-mimicking systems that will...
nmrlearner
Journal club
0
06-21-2011 01:50 PM
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA.
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA.
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA.
J Am Chem Soc. 2011 Mar 1;
Authors: Renault M, Bos MP, Tommassen J, Baldus M
Multidomain proteins constitute a large part of prokaryotic and eukaryotic proteomes and play fundamental roles in various physiological processes. However, their structural characterization is challenging because of their large size and...
nmrlearner
Journal club
0
03-03-2011 12:34 PM
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA
Marie Renault, Martine P. Bos, Jan Tommassen and Marc Baldus
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja109469c/aop/images/medium/ja-2010-09469c_0004.gif
Journal of the American Chemical Society
DOI: 10.1021/ja109469c
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/9XN1qiW-S-I
nmrlearner
Journal club
0
03-02-2011 02:01 AM
Structure analysis of membrane-reconstituted subunit c-ring of E. coli H+-ATP synthase by solid-state NMR.
Structure analysis of membrane-reconstituted subunit c-ring of E. coli H+-ATP synthase by solid-state NMR.
Structure analysis of membrane-reconstituted subunit c-ring of E. coli H+-ATP synthase by solid-state NMR.
J Biomol NMR. 2010 Sep;48(1):1-11
Authors: Todokoro Y, Kobayashi M, Sato T, Kawakami T, Yumen I, Aimoto S, Fujiwara T, Akutsu H
The subunit c-ring of H(+)-ATP synthase (F(o) c-ring) plays an essential role in the proton translocation across a membrane driven by the electrochemical potential. To understand its structure and function, we...
nmrlearner
Journal club
0
12-18-2010 12:00 PM
[NMR paper] How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
Related Articles How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
Chembiochem. 2005 Sep;6(9):1693-700
Authors: Lorch M, Faham S, Kaiser C, Weber I, Mason AJ, Bowie JU, Glaubitz C
Several studies have demonstrated that it is viable to use microcrystalline preparations of water-soluble proteins as...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Solution structure and dynamics of integral membrane proteins by NMR: a case study in
Solution structure and dynamics of integral membrane proteins by NMR: a case study involving the enzyme PagP.
Related Articles Solution structure and dynamics of integral membrane proteins by NMR: a case study involving the enzyme PagP.
Methods Enzymol. 2005;394:335-50
Authors: Hwang PM, Kay LE
Solution NMR spectroscopy is rapidly becoming an important technique for the study of membrane protein structure and dynamics. NMR experiments on large perdeuterated proteins typically exploit the favorable relaxation properties of backbone amide...
nmrlearner
Journal club
0
11-24-2010 11:14 PM
[NMR paper] NMR structure of the integral membrane protein OmpX.
NMR structure of the integral membrane protein OmpX.
Related Articles NMR structure of the integral membrane protein OmpX.
J Mol Biol. 2004 Mar 5;336(5):1211-21
Authors: Fernández C, Hilty C, Wider G, Güntert P, Wüthrich K
The structure of the integral membrane protein OmpX from Escherichia coli reconstituted in 60 kDa DHPC micelles (OmpX/DHPC) was calculated from 526 NOE upper limit distance constraints. The structure determination was based on complete sequence-specific assignments for the amide protons and the Val, Leu, and Ile(delta1)...
nmrlearner
Journal club
0
11-24-2010 09:25 PM
Structure analysis of membrane-reconstituted subunit c-ring of E. coli H+-ATP synthas
Abstract The subunit c-ring of H+-ATP synthase (Fo c-ring) plays an essential role in the proton translocation across a membrane driven by the electrochemical potential. To understand its structure and function, we have carried out solid-state NMR analysis under magic-angle sample spinning. The uniformly -labeled Fo c from E. coli (EFo c) was reconstituted into lipid membranes as oligomers. Its high resolution two- and three-dimensional spectra were obtained, and the 13C and 15N signals were assigned. The obtained chemical shifts suggested that EFo c takes on a hairpin-type helix-loop-helix...