BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 07-27-2013, 01:35 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Solution NMR resonance assignment strategies for ?-barrel membrane proteins

Solution NMR resonance assignment strategies for ?-barrel membrane proteins

Abstract

Membrane proteins in detergent micelles are large and dynamic complexes that present challenges for solution NMR investigations such as spectral overlap and line broadening. In this study, multiple methods are introduced to facilitate resonance assignment of ?-barrel membrane proteins using Opa60 from Neisseria gonorrhoeae as a model system. Opa60 is an eight-stranded ?-barrel with long extracellular loops (~63% of the protein) that engage host receptors and induce engulfment of the bacterium. The NMR spectra of Opa60 in detergent micelles exhibits significant spectral overlap and resonances corresponding to the loop regions had variable line widths, which interfered with a complete assignment of the protein. To assign the ?-barrel residues, trypsin cleavage was used to remove much of the extracellular loops while preserving the detergent solubilized ?-barrel. The removal of the loop resonances significantly improved the assignment of the Opa60 ?-barrel region (97% of the resonances corresponding to the ?-barrel and periplasmic turns were assigned). For the loop resonance assignments, two strategies were implemented; modulating temperature and synthetic peptides. Lowering the temperature broadened many peaks beyond detection and simplified the spectra to only the most dynamic regions of the loops facilitating 27 loop resonances to be assigned. To further assign functionally important and unstructured regions of the extracellular loops, a synthetic 20 amino acid peptide was synthesized and had nearly complete spectral overlap with the full-length protein allowing 17 loop resonances to be assigned. Collectively, these strategies are effective tools that may accelerate solution NMR structure determination of ?-barrel membrane proteins.




More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Solution NMR resonance assignment strategies for ?-barrel membrane proteins
Solution NMR resonance assignment strategies for ?-barrel membrane proteins Abstract Membrane proteins in detergent micelles are large and dynamic complexes that present challenges for solution NMR investigations such as spectral overlap and line broadening. In this study, multiple methods are introduced to facilitate resonance assignment of ?-barrel membrane proteins using Opa60 from Neisseria gonorrhoeae as a model system. Opa60 is an eight-stranded ?-barrel with long extracellular loops (~63% of the protein) that engage host receptors and induce engulfment of the bacterium. The NMR...
nmrlearner Journal club 0 06-27-2013 02:10 PM
Solution NMR resonance assignment strategies for ?-barrel membrane proteins
Solution NMR resonance assignment strategies for ?-barrel membrane proteins Abstract Membrane proteins in detergent micelles are large and dynamic complexes that present challenges for solution NMR investigations such as spectral overlap and line broadening. In this study, multiple methods are introduced to facilitate resonance assignment of ?-barrel membrane proteins using Opa60 from Neisseria gonorrhoeae as a model system. Opa60 is an eight-stranded ?-barrel with long extracellular loops (~63% of the protein) that engage host receptors and induce engulfment of the bacterium. The NMR...
nmrlearner Journal club 0 06-27-2013 01:52 AM
[NMR paper] Solution NMR resonance assignment strategies for ?-barrel membrane proteins.
Solution NMR resonance assignment strategies for ?-barrel membrane proteins. Solution NMR resonance assignment strategies for ?-barrel membrane proteins. Protein Sci. 2013 Jun 10; Authors: Fox DA, Columbus L Abstract Membrane proteins in detergent micelles are large and dynamic complexes that present challenges for solution NMR investigations such as spectral overlap and line broadening. In this study, multiple methods are introduced to facilitate resonance assignment of ?-barrel membrane proteins using Opa60 from Neisseria...
nmrlearner Journal club 0 06-12-2013 11:42 AM
Cell-free expression and stable isotope labelling strategies for membrane proteins
Cell-free expression and stable isotope labelling strategies for membrane proteins Abstract Membrane proteins are highly underrepresented in the structural data-base and remain one of the most challenging targets for functional and structural elucidation. Their roles in transport and cellular communication, furthermore, often make over-expression toxic to their host, and their hydrophobicity and structural complexity make isolation and reconstitution a complicated task, especially in cases where proteins are targeted to inclusion bodies. The development of cell-free expression systems...
nmrlearner Journal club 0 01-09-2011 12:46 PM
Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm.
Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm. Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm. J Biomol NMR. 2010 Dec 18; Authors: Hefke F, Bagaria A, Reckel S, Ullrich SJ, Dötsch V, Glaubitz C, Güntert P We present a computational method for finding optimal labeling patterns for the backbone...
nmrlearner Journal club 0 12-21-2010 01:00 PM
Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm
Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm Abstract We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273â??6279 (1982)), types of amino acids are labeled with 13C or/and 15N such that cross peaks between 13CO(i â?? 1) and 15NH(i) result only for pairs...
nmrlearner Journal club 0 12-21-2010 02:14 AM
[NMR paper] Resonance assignment strategies for the analysis of NMR spectra of proteins.
Resonance assignment strategies for the analysis of NMR spectra of proteins. Related Articles Resonance assignment strategies for the analysis of NMR spectra of proteins. Mol Biotechnol. 1994 Aug;2(1):61-93 Authors: Leopold MF, Urbauer JL, Wand AJ Determination of the high resolution solution structure of a protein using nuclear magnetic resonance (NMR) spectroscopy requires that resonances observed in the NMR spectra be unequivocally assigned to individual nuclei of the protein. With the advent of modern, two-dimensional NMR techniques arose...
nmrlearner Journal club 0 08-22-2010 03:29 AM
[NMR paper] Assignment strategies in homonuclear three-dimensional 1H NMR spectra of proteins.
Assignment strategies in homonuclear three-dimensional 1H NMR spectra of proteins. Related Articles Assignment strategies in homonuclear three-dimensional 1H NMR spectra of proteins. Biochemistry. 1990 Feb 20;29(7):1829-39 Authors: Vuister GW, Boelens R, Padilla A, Kleywegt GJ, Kaptein R The increase in dimensionality of three-dimensional (3D) NMR greatly enhances the spectral resolution in comparison to 2D NMR. It alleviates the problem of resonance overlap and may extend the range of molecules amenable to structure determination by...
nmrlearner Journal club 0 08-21-2010 10:48 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:49 AM.


Map