BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-28-2014, 11:37 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,787
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Solution NMR characterization of WT CXCL8 monomer and dimer binding to CXCR1 N-terminal domain

Solution NMR characterization of WT CXCL8 monomer and dimer binding to CXCR1 N-terminal domain

Abstract

Chemokine CXCL8 and its receptor CXCR1 are key mediators in combating infection and have also been implicated in the pathophysiology of various diseases including chronic obstructive pulmonary disease (COPD) and cancer. CXCL8 exists as monomers and dimers but monomer alone binds CXCR1 with high affinity. CXCL8 function involves binding two distinct CXCR1 sites – the N-terminal domain (Site-I) and the extracellular/transmembrane domain (Site-II). Therefore, higher monomer affinity could be due to stronger binding at Site-I or Site-II or both. We have now characterized the binding of a human CXCR1 N-terminal domain peptide (hCXCR1Ndp) to WT CXCL8 under conditions where it exists as both monomers and dimers. We show that the WT monomer binds the CXCR1 N-domain with much higher affinity and that binding is coupled to dimer dissociation. We also characterized the binding of two CXCL8 monomer variants and a trapped dimer to two different hCXCR1Ndp constructs, and observe that the monomer binds with ~10- to 100-fold higher affinity than the dimer. Our studies also show that the binding constants of monomer and dimer to the receptor peptides, and the dimer dissociation constant, can vary significantly as a function of pH and buffer, and so the ability to observe WT monomer peaks is critically dependent on NMR experimental conditions. We conclude that the monomer is the high affinity CXCR1 agonist, that Site-I interactions play a dominant role in determining monomer vs. dimer affinity, and that the dimer plays an indirect role in regulating monomer function.




More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Solution NMR characterization of WT CXCL8 monomer and dimer binding to CXCR1 N-terminal domain.
Solution NMR characterization of WT CXCL8 monomer and dimer binding to CXCR1 N-terminal domain. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Solution NMR characterization of WT CXCL8 monomer and dimer binding to CXCR1 N-terminal domain. Protein Sci. 2014 Oct 18; Authors: Joseph PR, Rajarathnam K Abstract Chemokine CXCL8 and its receptor CXCR1 are key mediators in combating infection and have also been...
nmrlearner Journal club 0 10-21-2014 11:31 PM
Solution NMR characterization of WT CXCL8 monomer and dimer binding to CXCR1 N-terminal domain
Solution NMR characterization of WT CXCL8 monomer and dimer binding to CXCR1 N-terminal domain Abstract Chemokine CXCL8 and its receptor CXCR1 are key mediators in combating infection and have also been implicated in the pathophysiology of various diseases including chronic obstructive pulmonary disease (COPD) and cancer. CXCL8 exists as monomers and dimers but monomer alone binds CXCR1 with high affinity. CXCL8 function involves binding two distinct CXCR1 sites – the N-terminal domain (Site-I) and the extracellular/transmembrane domain (Site-II). Therefore, higher monomer affinity...
nmrlearner Journal club 0 10-18-2014 09:26 PM
Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain
Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain March 2012 Publication year: 2012 Source:Biochimie, Volume 94, Issue 3</br> </br> The insulin-like growth factor binding proteins are a family of six proteins (IGFBP-1 to -6) that bind insulin-like growth factors-I and -II (IGF-I/II) with high affinity. In addition to regulating IGF actions, IGFBPs have IGF-independent functions. IGFBP-2, the largest member of this family, is over-expressed in many cancers and has been proposed as a possible target for the...
nmrlearner Journal club 0 02-03-2013 10:13 AM
Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain.
Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain. Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain. Biochimie. 2011 Sep 22; Authors: Galea CA, Mobli M, McNeil KA, Mulhern TD, Wallace JC, King GF, Forbes BE, Norton RS Abstract The insulin-like growth factor binding proteins are a family of six proteins (IGFBP-1 to 6) that bind insulin-like growth factors-I and -II (IGF-I/II) with high affinity. In addition...
nmrlearner Journal club 0 09-30-2011 06:00 AM
Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain.
Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain. Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain. Biochimie. 2011 Sep 22; Authors: Galea CA, Mobli M, McNeil KA, Mulhern TD, Wallace JC, King GF, Forbes BE, Norton RS Abstract The insulin-like growth factor binding proteins are a family of six proteins (IGFBP-1 to 6) that bind insulin-like growth factors-I and -II (IGF-I/II) with high affinity. In...
nmrlearner Journal club 0 09-30-2011 05:59 AM
[NMR paper] Solution structure of the carboxyl-terminal domain of RAP74 and NMR characterization
Solution structure of the carboxyl-terminal domain of RAP74 and NMR characterization of the FCP1-binding sites of RAP74 and human TFIIB. Solution structure of the carboxyl-terminal domain of RAP74 and NMR characterization of the FCP1-binding sites of RAP74 and human TFIIB. Biochemistry. 2003 Feb 18;42(6):1460-9 Authors: Nguyen BD, Chen HT, Kobor MS, Greenblatt J, Legault P, Omichinski JG FCP1 (TFIIF-associated CTD phosphatase) is the only known phosphatase specific for the phosphorylated CTD of RNAP II. The phosphatase activity of FCP1 is...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] NMR spectroscopic studies of the DNA-binding domain of the monomer-binding nuclear or
NMR spectroscopic studies of the DNA-binding domain of the monomer-binding nuclear orphan receptor, human estrogen related receptor-2. The carboxyl-terminal extension to the zinc-finger region is unstructured in the free form of the protein. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-standard-jbc_full_free.gif Related Articles NMR spectroscopic studies of the DNA-binding domain of the monomer-binding nuclear orphan receptor, human estrogen related receptor-2. The carboxyl-terminal extension to the zinc-finger region...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] NMR solution structure of the C-terminal fragment 255-316 of thermolysin: a dimer for
NMR solution structure of the C-terminal fragment 255-316 of thermolysin: a dimer formed by subunits having the native structure. Related Articles NMR solution structure of the C-terminal fragment 255-316 of thermolysin: a dimer formed by subunits having the native structure. Biochemistry. 1994 Dec 13;33(49):14834-47 Authors: Rico M, Jiménez MA, González C, De Filippis V, Fontana A The solution structure of the C-terminal fragment 255-316 of thermolysin has been determined by two-dimensional proton NMR methods. For this disulfide-free...
nmrlearner Journal club 0 08-22-2010 03:29 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:59 PM.


Map