BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 01-26-2016, 03:40 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Solution NMR characterization of apical membrane antigen 1 and small molecule interactions as a basis for designing new antimalarials.

Solution NMR characterization of apical membrane antigen 1 and small molecule interactions as a basis for designing new antimalarials.

Related Articles Solution NMR characterization of apical membrane antigen 1 and small molecule interactions as a basis for designing new antimalarials.

J Mol Recognit. 2016 Jan 24;

Authors: Krishnarjuna B, Lim SS, Devine SM, Debono CO, Lam R, Chandrashekaran IR, Jaipuria G, Yagi H, Atreya HS, Scanlon MJ, MacRaild CA, Scammells PJ, Norton RS

Abstract
Plasmodium falciparum apical membrane antigen 1 (PfAMA1) plays an important role in the invasion by merozoites of human red blood cells during a malaria infection. A key region of PfAMA1 is a conserved hydrophobic cleft formed by 12 hydrophobic residues. As anti-apical membrane antigen 1 antibodies and other inhibitory molecules that target this hydrophobic cleft are able to block the invasion process, PfAMA1 is an attractive target for the development of strain-transcending antimalarial agents. As solution nuclear magnetic resonance spectroscopy is a valuable technique for the rapid characterization of protein-ligand interactions, we have determined the sequence-specific backbone assignments for PfAMA1 from two P. falciparum strains, FVO and 3D7. Both selective labelling and unlabelling strategies were used to complement triple-resonance experiments in order to facilitate the assignment process. We have then used these assignments for mapping the binding sites for small molecules, including benzimidazoles, pyrazoles and 2-aminothiazoles, which were selected on the basis of their affinities measured from surface plasmon resonance binding experiments. Among the compounds tested, benzimidazoles showed binding to a similar region on both FVO and 3D7 PfAMA1, suggesting that these compounds are promising scaffolds for the development of novel PfAMA1 inhibitors. Copyright © 2016 John Wiley & Sons, Ltd.


PMID: 26804042 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Membrane interactions in small fast-tumbling bicelles as studied by (31)P NMR.
Membrane interactions in small fast-tumbling bicelles as studied by (31)P NMR. Membrane interactions in small fast-tumbling bicelles as studied by (31)P NMR. Biochim Biophys Acta. 2014 Dec 9; Authors: Bodor A, Kövér KE, Mäler L Abstract Small fast-tumbling bicelles are ideal for studies of membrane interactions at molecular level; they allow analysis of lipid properties using solution-state NMR. In the present study we used (31)P NMR relaxation to obtain detailed information on lipid head-group dynamics. We explored the effect...
nmrlearner Journal club 0 12-17-2014 09:43 PM
[NMR paper] Structural Characterization of a Flexible Two-Domain Protein in Solution Using Small Angle X-Ray Scattering and NMR Data.
Structural Characterization of a Flexible Two-Domain Protein in Solution Using Small Angle X-Ray Scattering and NMR Data. Structural Characterization of a Flexible Two-Domain Protein in Solution Using Small Angle X-Ray Scattering and NMR Data. Structure. 2014 Nov 6;22(12):1862-1874 Authors: Lemak A, Wu B, Yee A, Houliston S, Lee HW, Gutmanas A, Fang X, Garcia M, Semesi A, Wang YX, Prestegard JH, Arrowsmith CH Abstract Multidomain proteins in which individual domains are connected by linkers often possess inherent...
nmrlearner Journal club 0 12-03-2014 04:05 PM
Structural Characterization of a Flexible Two-Domain Protein in Solution Using Small Angle X-Ray Scattering and NMR Data
Structural Characterization of a Flexible Two-Domain Protein in Solution Using Small Angle X-Ray Scattering and NMR Data Publication date: Available online 6 November 2014 Source:Structure</br> Author(s): Alexander Lemak , Bin Wu , Adelinda Yee , Scott Houliston , Hsiau-Wei Lee , Aleksandras Gutmanas , Xianyang Fang , Maite Garcia , Anthony Semesi , Yun-Xing Wang , James*H. Prestegard , Cheryl*H. Arrowsmith</br> Multidomain proteins in which individual domains are connected by linkers often possess inherent interdomain flexibility that significantly...
nmrlearner Journal club 0 11-07-2014 09:09 AM
NMR characterization of the conformational fluctuations of the human lymphocyte function-associated antigen-1 I-domain
NMR characterization of the conformational fluctuations of the human lymphocyte function-associated antigen-1 I-domain Abstract Lymphocyte function-associated antigen-1 (LFA-1) is an integrin protein that transmits information across the plasma membrane through the so-called inside-out and outside-in signaling mechanisms. To investigate these mechanisms, we carried out an NMR analysis of the dynamics of the LFA-1 I-domain, which has enabled us to characterize the motions of this domain on a broad range of timescales. We studied first the internal motions on the nanosecond timescale by...
nmrlearner Journal club 0 09-05-2014 03:03 PM
[NMR paper] Expression and structural characterization of anti-T-antigen single chain antibodies (scFvs) and analysis of their binding to T-antigen by surface plasmon resonance and NMR spectroscopy.
Expression and structural characterization of anti-T-antigen single chain antibodies (scFvs) and analysis of their binding to T-antigen by surface plasmon resonance and NMR spectroscopy. Expression and structural characterization of anti-T-antigen single chain antibodies (scFvs) and analysis of their binding to T-antigen by surface plasmon resonance and NMR spectroscopy. J Biochem. 2013 Oct 4; Authors: Yuasa N, Koyama T, Subedi GP, Yamaguchi Y, Matsushita M, Fujita-Yamaguchi Y Abstract T-antigen (Gal?1-3GalNAc?-1-Ser/Thr), also known as...
nmrlearner Journal club 0 10-08-2013 02:04 PM
[NMR paper] Screening protein-small molecule interactions by NMR.
Screening protein-small molecule interactions by NMR. Related Articles Screening protein-small molecule interactions by NMR. Methods Mol Biol. 2013;1008:389-413 Authors: Davis B Abstract Nuclear magnetic resonance (NMR) is well suited to probing the interactions between ligands and macromolecular receptors. It is a truly label-free technique, requiring only the presence of atoms (usually (1)H or (19)F) which give rise to observable resonances on either the ligand or the receptor. A number of parameters associated with these resonances can...
nmrlearner Journal club 0 06-05-2013 06:53 PM
[CNS Yahoo group] How to add bond between protein residue and a small molecule in CNS
How to add bond between protein residue and a small molecule in CNS Dear All, I'm stuck in a step where in i need to connect a bond an amino acid residue and a small molecule in CNS Thank you. Joseph More...
nmrlearner News from other NMR forums 0 08-07-2011 01:35 AM
Small Molecule NMR Scientist (B.S./ M.S.) at Novartis Ag (Cambridge, MA)
Small Molecule NMR Scientist (B.S./ M.S.) at Novartis Ag (Cambridge, MA) using the state-of-the-art NMR methodologies. As an NMR scientist within the team, you will be responsible for ... in small molecular NMR with demonstrated success in modern NMR methodologies. Demonstrated skills in data collection... More...
nmrlearner Job marketplace 0 08-19-2010 02:32 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:13 PM.


Map