Solution 1H NMR characterization of substrate-free C. diphtheriae heme oxygenase: pertinence for determining magnetic axes in paramagnetic substrate complexes.
Solution 1H NMR characterization of substrate-free C. diphtheriae heme oxygenase: pertinence for determining magnetic axes in paramagnetic substrate complexes.
Solution 1H NMR characterization of substrate-free C. diphtheriae heme oxygenase: pertinence for determining magnetic axes in paramagnetic substrate complexes.
J Inorg Biochem. 2010 Oct;104(10):1063-70
Authors: Du Z, Unno M, Matsui T, Ikeda-Saito M, La Mar GN
Proton 2D NMR was used to confirm in solution a highly conserved portion of the molecular structure upon substrate loss for the heme oxygenase from the pathogenic bacterium Corynebacterium diphtheriae, HmuO. The chemical shifts for the conserved portion of the structure are assessed as references for the dipolar shifts needed to determine the orientation of the paramagnetic susceptibility tensor, chi, in paramagnetic substrate complexes of HmuO. It is shown that the chemical shifts for the structurally conserved portion of substrate-free HmuO serve as excellent references for residues with only small to moderate sized dipolar shifts in the cyanide-inhibited substrate complex of HmuO, yielding an orientation of chi that is essentially the same as conventionally obtained from large dipolar shifts based on empirical estimates of the diamagnetic reference. The implications of these diamagnetic chemical shifts for characterizing the hydrogen bonding in the physiologically relevant, resting-state, high-spin aquo complex are discussed. The pattern of labile proton exchange in the distal H-bond network of substrate-free HmuO allowed comparison of changes in dynamic stability of tertiary contacts in the substrate-free and substrate-bound HmuO and with the same complexes of human heme oxygenase.
Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis; A 1H NMR study.
Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis; A 1H NMR study.
Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis; A 1H NMR study.
Biochemistry. 2011 Aug 27;
Authors: Peng D, Satterlee JD, Ma LH, Dallas JL, Smith KM, Zhang X, Sato M, La Mar GN
Abstract
Heme oxygenase, HO, from the pathogenic bacterium N. meningitidis, NmHO, which...
nmrlearner
Journal club
0
08-30-2011 04:52 PM
[NMR paper] Fluctuations in free or substrate-complexed lysozyme and a mutant of it detected on x
Fluctuations in free or substrate-complexed lysozyme and a mutant of it detected on x-ray crystallography and comparison with those detected on NMR.
Related Articles Fluctuations in free or substrate-complexed lysozyme and a mutant of it detected on x-ray crystallography and comparison with those detected on NMR.
J Biochem. 2002 May;131(5):701-4
Authors: Ohmura T, Motoshima H, Ueda T, Imoto T
A mutant lysozyme in which Arg14 and His15 were deleted together exhibited higher activity toward glycol chitin than the wild-type lysozyme. Moreover,...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain:
NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain: a preview of chaperone-protein interaction.
Related Articles NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain: a preview of chaperone-protein interaction.
Biochemistry. 1998 Jun 2;37(22):7929-40
Authors: Wang H, Kurochkin AV, Pang Y, Hu W, Flynn GC, Zuiderweg ER
The solution structure of the 21 kDa substrate-binding domain of the Escherichia coli Hsp70-chaperone protein DnaK (DnaK 386-561) has been determined to a precision...
nmrlearner
Journal club
0
11-17-2010 11:06 PM
[NMR paper] Solution structure of synthetic peptide inhibitor and substrate of cAMP-dependent pro
Solution structure of synthetic peptide inhibitor and substrate of cAMP-dependent protein kinase. A study by 2D H NMR and molecular dynamics.
Related Articles Solution structure of synthetic peptide inhibitor and substrate of cAMP-dependent protein kinase. A study by 2D H NMR and molecular dynamics.
J Pept Res. 1997 Mar;49(3):210-20
Authors: Padilla A, Hauer JA, Tsigelny I, Parello J, Taylor SS
Peptides derived from the inhibitor of cAMP-dependent protein kinase. PKI, have been studied by 2D 1H NMR techniques. These include the inhibitor...
nmrlearner
Journal club
0
08-22-2010 03:31 PM
[NMR paper] Solution structure of synthetic peptide inhibitor and substrate of cAMP-dependent pro
Solution structure of synthetic peptide inhibitor and substrate of cAMP-dependent protein kinase. A study by 2D H NMR and molecular dynamics.
Related Articles Solution structure of synthetic peptide inhibitor and substrate of cAMP-dependent protein kinase. A study by 2D H NMR and molecular dynamics.
J Pept Res. 1997 Mar;49(3):210-20
Authors: Padilla A, Hauer JA, Tsigelny I, Parello J, Taylor SS
Peptides derived from the inhibitor of cAMP-dependent protein kinase. PKI, have been studied by 2D 1H NMR techniques. These include the inhibitor...
nmrlearner
Journal club
0
08-22-2010 03:03 PM
[NMR paper] Proton NMR investigation of substrate-bound heme oxygenase: evidence for electronic a
Proton NMR investigation of substrate-bound heme oxygenase: evidence for electronic and steric contributions to stereoselective heme cleavage.
Related Articles Proton NMR investigation of substrate-bound heme oxygenase: evidence for electronic and steric contributions to stereoselective heme cleavage.
Biochemistry. 1994 May 31;33(21):6631-41
Authors: Hernández G, Wilks A, Paolesse R, Smith KM, Ortiz de Montellano PR, La Mar GN
The substrate-bound form of the enzyme heme oxygenase (HO), which catalyzed the stereospecific alpha-meso bridge...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] Proton NMR investigation of substrate-bound heme oxygenase: evidence for electronic a
Proton NMR investigation of substrate-bound heme oxygenase: evidence for electronic and steric contributions to stereoselective heme cleavage.
Related Articles Proton NMR investigation of substrate-bound heme oxygenase: evidence for electronic and steric contributions to stereoselective heme cleavage.
Biochemistry. 1994 May 31;33(21):6631-41
Authors: Hernández G, Wilks A, Paolesse R, Smith KM, Ortiz de Montellano PR, La Mar GN
The substrate-bound form of the enzyme heme oxygenase (HO), which catalyzed the stereospecific alpha-meso bridge...