Available online 20 November 2012
Publication year: 2012 Source:Journal of Magnetic Resonance
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) [1], but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized 13C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional 13C MAS NMR spectra of frozen solutions of uniformly 13C-labeled L-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly 13C-labeled amino acids. Graphical abstract
Highlights
? Probe for solid state NMR with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20 K and 9.4 Tesla. ? Signal enhancement greater than 25 fold (microwaves on versus microwaves off) using 30 mW of microwaves. ? 2D 13C-13C spectra for 160 nanomoles of the 26 residue peptide melittin in frozen solution, taken in ~2½ hr.
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
Kent R. Thurber, Alexey Potapov, Wai-Ming Yau, Robert Tycko</br>
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) ,...
nmrlearner
Journal club
0
11-21-2012 04:33 AM
Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination
Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination
Abstract Several techniques for spectral editing of 2D 13Câ??13C correlation NMR of proteins are introduced. They greatly reduce the spectral overlap for five common amino acid types, thus simplifying spectral assignment and conformational analysis. The carboxyl (COO) signals of glutamate and aspartate are selected by suppressing the overlapping amide Nâ??CO peaks through 13Câ??15N dipolar dephasing. The sidechain methine (CH) signals of valine,...
nmrlearner
Journal club
0
10-13-2012 04:42 AM
Intermolecular Structure Determination of Amyloid Fibrils with Magic-Angle Spinning and Dynamic Nuclear Polarization NMR
Intermolecular Structure Determination of Amyloid Fibrils with Magic-Angle Spinning and Dynamic Nuclear Polarization NMR
Marvin J. Bayro, Galia T. Debelouchina, Matthew T. Eddy, Neil R. Birkett, Catherine E. MacPhee, Melanie Rosay, Werner E. Maas, Christopher M. Dobson and Robert G. Griffin
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja203756x/aop/images/medium/ja-2011-03756x_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja203756x
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner
Journal club
0
08-13-2011 02:47 AM
Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR.
Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR.
Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR.
J Am Chem Soc. 2011 Jul 21;
Authors: Bayro MJ, Debelouchina GT, Eddy MT, Birkett NR, Macphee CE, Rosay MM, Maas WE, Dobson CM, Griffin RG
We describe magic-angle spinning NMR experiments designed to elucidate the interstrand architecture of amyloid fibrils. Three methods are introduced for this purpose, two...
nmrlearner
Journal club
0
07-23-2011 08:54 AM
[NMR paper] Resonance assignments and secondary structure analysis of E. coli thioredoxin by magic angle spinning solid-state NMR spectroscopy.
Resonance assignments and secondary structure analysis of E. coli thioredoxin by magic angle spinning solid-state NMR spectroscopy.
Related Articles Resonance assignments and secondary structure analysis of E. coli thioredoxin by magic angle spinning solid-state NMR spectroscopy.
J Phys Chem B. 2005 Sep 29;109(38):18135-45
Authors: Marulanda D, Tasayco ML, Cataldi M, Arriaran V, Polenova T
De novo site-specific 13C and 15N backbone and sidechain resonance assignments are presented for uniformly enriched E. coli thioredoxin, established using...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
Automated protein resonance assignments of magic angle spinning solid-state NMR spect
Automated protein resonance assignments of magic angle spinning solid-state NMR spectra of β1 immunoglobulin binding domain of protein G (GB1)
Abstract Magic-angle spinning solid-state NMR (MAS SSNMR) represents a fast developing experimental technique with great potential to provide structural and dynamics information for proteins not amenable to other methods. However, few automated analysis tools are currently available for MAS SSNMR. We present a methodology for automating protein resonance assignments of MAS SSNMR spectral data and its application to experimental peak lists of the...
nmrlearner
Journal club
0
10-15-2010 05:16 PM
Automated protein resonance assignments of magic angle spinning solid-state NMR spect
Automated protein resonance assignments of magic angle spinning solid-state NMR spectra of ?1 immunoglobulin binding domain of protein G (GB1).
Related Articles Automated protein resonance assignments of magic angle spinning solid-state NMR spectra of ?1 immunoglobulin binding domain of protein G (GB1).
J Biomol NMR. 2010 Oct 8;
Authors: Moseley HN, Sperling LJ, Rienstra CM
Magic-angle spinning solid-state NMR (MAS SSNMR) represents a fast developing experimental technique with great potential to provide structural and dynamics information for...
nmrlearner
Journal club
0
10-12-2010 02:52 PM
Dynamic nuclear polarization experiments at 14.1 T for solid-state NMR.
Dynamic nuclear polarization experiments at 14.1 T for solid-state NMR.
Related Articles Dynamic nuclear polarization experiments at 14.1 T for solid-state NMR.
Phys Chem Chem Phys. 2010 Jun 14;12(22):5799-803
Authors: Matsuki Y, Takahashi H, Ueda K, Idehara T, Ogawa I, Toda M, Akutsu H, Fujiwara T
Instrumentation for high-field dynamic nuclear polarization (DNP) at 14.1 T was developed to enhance the nuclear polarization for NMR of solids. The gyrotron generated 394.5 GHz submillimeter (sub-mm) wave with a power of 40 W in the second harmonic...