Solid-state NMR studies of sedimented soluble proteins has been developed recently as an attractive approach for overcoming the size limitations of solution NMR spectroscopy while bypassing the need for sample crystallization or precipitation (Bertini et al. Proc Natl Acad Sci USA 108(26):10396â??10399, 2011). Inspired by the potential benefits of this method, we have investigated the ability to sediment lipid bilayer nanodiscs reconstituted with a membrane protein. In this study, we show that nanodiscs containing the outer membrane protein Ail from Yersinia pestis can be sedimented for solid-state NMR structural studies, without the need for precipitation or lyophilization. Optimized preparations of Ail in phospholipid nanodiscs support both the structure and the fibronectin binding activity of the protein. The same sample can be used for solution NMR, solid-state NMR and activity assays, facilitating structureâ??activity correlation experiments across a wide range of timescales.
[NMR paper] Correlating Lipid Bilayer Fluidity with Sensitivity and Resolution of Polytopic Membrane Protein Spectra by Solid-State NMR Spectroscopy.
Correlating Lipid Bilayer Fluidity with Sensitivity and Resolution of Polytopic Membrane Protein Spectra by Solid-State NMR Spectroscopy.
Related Articles Correlating Lipid Bilayer Fluidity with Sensitivity and Resolution of Polytopic Membrane Protein Spectra by Solid-State NMR Spectroscopy.
Biochim Biophys Acta. 2014 May 13;
Authors: Banigan JR, Gayen A, Traaseth NJ
Abstract
Solid-state NMR spectroscopy has emerged as an excellent tool to study the structure and dynamics of membrane proteins under native-like conditions in lipid...
nmrlearner
Journal club
0
05-20-2014 11:10 PM
Correlating Lipid Bilayer Fluidity with Sensitivity and Resolution of Polytopic Membrane Protein Spectra by Solid-State NMR Spectroscopy
Correlating Lipid Bilayer Fluidity with Sensitivity and Resolution of Polytopic Membrane Protein Spectra by Solid-State NMR Spectroscopy
Publication date: Available online 13 May 2014
Source:Biochimica et Biophysica Acta (BBA) - Biomembranes</br>
Author(s): James R. Banigan , Anindita Gayen , Nathaniel J. Traaseth</br>
Solid-state NMR spectroscopy has emerged as an excellent tool to study the structure and dynamics of membrane proteins under native-like conditions in lipid bilayers. One of the key considerations in experimental design is the uniaxial rotational...
nmrlearner
Journal club
0
05-14-2014 04:50 AM
[NMR paper] Solution-NMR Characterization of Outer-Membrane Protein A from E. coli in Lipid Bilayer Nanodiscs and Detergent Micelles.
Solution-NMR Characterization of Outer-Membrane Protein A from E. coli in Lipid Bilayer Nanodiscs and Detergent Micelles.
Related Articles Solution-NMR Characterization of Outer-Membrane Protein A from E. coli in Lipid Bilayer Nanodiscs and Detergent Micelles.
Chembiochem. 2014 Apr 1;
Authors: Sušac L, Horst R, Wüthrich K
Abstract
X-ray crystallography and solution NMR of detergent-reconstituted OmpA (outer membrane protein A from E. coli) had shown that this protein forms an eight-stranded transmembrane ?-barrel, but only...
nmrlearner
Journal club
0
04-03-2014 12:59 PM
[NMR paper] Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples.
Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples.
Related Articles Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples.
Nat Protoc. 2013 Nov;8(11):2256-70
Authors: Das N, Murray DT, Cross TA
Abstract
nmrlearner
Journal club
0
10-27-2013 12:53 AM
[NMR paper] Solution NMR spectroscopic characterization of human VDAC-2 in detergent micelles and lipid bilayer nanodiscs.
Solution NMR spectroscopic characterization of human VDAC-2 in detergent micelles and lipid bilayer nanodiscs.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Solution NMR spectroscopic characterization of human VDAC-2 in detergent micelles and lipid bilayer nanodiscs.
Biochim Biophys Acta. 2012 Jun;1818(6):1562-9
Authors: Yu TY, Raschle T, Hiller S, Wagner G
Abstract
Three isoforms of the human voltage-dependent anion channel (VDAC), located...
nmrlearner
Journal club
0
04-04-2013 08:50 PM
Solid-state NMR of proteins sedimented by ultracentrifugation [Chemistry]
Solid-state NMR of proteins sedimented by ultracentrifugation
Bertini, I., Luchinat, C., Parigi, G., Ravera, E., Reif, B., Turano, P....
Date: 2011-06-28
Relatively large proteins in solution, spun in NMR rotors for solid samples at typical ultracentrifugation speeds, sediment at the rotor wall. The sedimented proteins provide high-quality solid-state-like NMR spectra suitable for structural investigation. The proteins fully revert to the native solution state when spinning is stopped, allowing one to study them in both conditions. Transiently sedimented proteins can be considered a...
nmrlearner
Journal club
0
06-29-2011 04:45 AM
Solid-state NMR of proteins sedimented by ultracentrifugation.
Solid-state NMR of proteins sedimented by ultracentrifugation.
Solid-state NMR of proteins sedimented by ultracentrifugation.
Proc Natl Acad Sci U S A. 2011 Jun 13;
Authors: Bertini I, Luchinat C, Parigi G, Ravera E, Reif B, Turano P
Relatively large proteins in solution, spun in NMR rotors for solid samples at typical ultracentrifugation speeds, sediment at the rotor wall. The sedimented proteins provide high-quality solid-state-like NMR spectra suitable for structural investigation. The proteins fully revert to the native solution state when...
nmrlearner
Journal club
0
06-15-2011 01:15 PM
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA
Marie Renault, Martine P. Bos, Jan Tommassen and Marc Baldus
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja109469c/aop/images/medium/ja-2010-09469c_0004.gif
Journal of the American Chemical Society
DOI: 10.1021/ja109469c
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/9XN1qiW-S-I