Related ArticlesSolid-state NMR Study of the YadA Membrane-Anchor Domain in the Bacterial Outer Membrane.
Angew Chem Int Ed Engl. 2015 Aug 31;
Authors: Shahid SA, Nagaraj M, Chauhan N, Franks TW, Bardiaux B, Habeck M, Orwick-Rydmark M, Linke D, van Rossum BJ
Abstract
MAS-NMR was used to study the structure and dynamics at ambient temperatures of the membrane-anchor domain of YadA (YadA-M) in a pellet of the outer membrane of E. coli in which it was expressed. YadA is an adhesin from the pathogen Yersinia enterocolitica that is involved in interactions with the host cell, and it is a model protein for studying the autotransport process. Existing assignments were sucessfully transferred to a large part of the YadA-M protein in the E. coli lipid environment by using (13) C-(13) C DARR and PDSD spectra at different mixing times. The chemical shifts in most regions of YadA-M are unchanged relative to those in microcrystalline YadA-M preparations from which a structure has previously been solved, including the ASSA region that is proposed to be involved in transition-state hairpin formation for transport of the soluble domain. Comparisons of the dynamics between the microcrystalline and membrane-embedded samples indicate greater flexibility of the ASSA region in the outer-membrane preparation at physiological temperatures. This study will pave the way towards MAS-NMR structure determination of membrane proteins, and a better understanding of functionally important dynamic residues in native membrane environments.
PMID: 26332158 [PubMed - as supplied by publisher]
[NMR paper] Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation.
Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation.
Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation.
J Biomol NMR. 2015 Jan 13;
Authors: Ding Y, Fujimoto LM, Yao Y, Marassi FM
Abstract
Solid-state NMR studies of sedimented soluble proteins has been developed recently as an attractive approach for overcoming the size limitations of solution NMR spectroscopy while bypassing the...
nmrlearner
Journal club
0
01-13-2015 02:31 PM
Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation
Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation
Abstract
Solid-state NMR studies of sedimented soluble proteins has been developed recently as an attractive approach for overcoming the size limitations of solution NMR spectroscopy while bypassing the need for sample crystallization or precipitation (Bertini et al. Proc Natl Acad Sci USA 108(26):10396â??10399, 2011). Inspired by the potential benefits of this method, we have investigated the ability to sediment lipid bilayer...
[NMR paper] Structure and Topology of the Huntingtin 1-17 Membrane Anchor by*a*Combined Solution and Solid-State NMR Approach.
Structure and Topology of the Huntingtin 1-17 Membrane Anchor by*a*Combined Solution and Solid-State NMR Approach.
Structure and Topology of the Huntingtin 1-17 Membrane Anchor by*a*Combined Solution and Solid-State NMR Approach.
Biophys J. 2013 Aug 6;105(3):699-710
Authors: Michalek M, Salnikov ES, Bechinger B
Abstract
The very amino-terminal domain of the huntingtin protein is directly located upstream of the protein's polyglutamine tract, plays a decisive role in several important properties of this large protein and in the development...
nmrlearner
Journal club
0
08-13-2013 04:26 PM
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA.
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA.
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA.
J Am Chem Soc. 2011 Mar 1;
Authors: Renault M, Bos MP, Tommassen J, Baldus M
Multidomain proteins constitute a large part of prokaryotic and eukaryotic proteomes and play fundamental roles in various physiological processes. However, their structural characterization is challenging because of their large size and...
nmrlearner
Journal club
0
03-03-2011 12:34 PM
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA
Marie Renault, Martine P. Bos, Jan Tommassen and Marc Baldus
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja109469c/aop/images/medium/ja-2010-09469c_0004.gif
Journal of the American Chemical Society
DOI: 10.1021/ja109469c
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/9XN1qiW-S-I
nmrlearner
Journal club
0
03-02-2011 02:01 AM
[NMR paper] How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
Related Articles How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
Chembiochem. 2005 Sep;6(9):1693-700
Authors: Lorch M, Faham S, Kaiser C, Weber I, Mason AJ, Bowie JU, Glaubitz C
Several studies have demonstrated that it is viable to use microcrystalline preparations of water-soluble proteins as...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Solid-state magic-angle spinning NMR of outer-membrane protein G from Escherichia coli.
Solid-state magic-angle spinning NMR of outer-membrane protein G from Escherichia coli.
Related Articles Solid-state magic-angle spinning NMR of outer-membrane protein G from Escherichia coli.
Chembiochem. 2005 Sep;6(9):1679-84
Authors: Hiller M, Krabben L, Vinothkumar KR, Castellani F, van Rossum BJ, Kühlbrandt W, Oschkinat H
Uniformly 13C-,15N-labelled outer-membrane protein G (OmpG) from Escherichia coli was expressed for structural studies by solid-state magic-angle spinning (MAS) NMR. Inclusion bodies of the recombinant, labelled protein...