The molecular mobility of protein in lyophilized lysozyme-sugar systems stored at different relative humidities was studied using solid-state NMR. Relaxation measurements, T(1) of high-frequency (MHz), and T(1rho), of low-frequency (kHz) motions, were performed on lysozyme lyophilized with lactose and trehalose. Molecular aggregation and enzymatic activity of the protein were determined using HPLC and bioassays. An increase in hydration had little effect on the T(1rho) values of pure lysozyme, trehalose, lactose, trehalose-lysozyme, and lysozyme at low lactose concentrations. The T(1) values of pure sugar increased as moisture content increased. The presence of both sugars led to increased T(1) values of the lysozyme but increasing hydration gradually reduced T(1) values. When a larger amount of lactose was lyophilized with lysozyme, longer T(1) (and T(1rho)) values were seen for lactose than for lysozyme. Although longer T(1) values were related to an increase in protein stability, the effect of crystallization and sugar type appeared to be major contributing factors. Trehalose and lactose decreased relaxation rates in the lysozyme-sugar systems while hydration increased relaxation rates that were correlated with changes in aggregation and activity of the protein.
Solid-State NMR Study of the Charge-Transfer Complex between Ubiquinone-8 and Disulfide Bond Generating Membrane Protein DsbB.
Solid-State NMR Study of the Charge-Transfer Complex between Ubiquinone-8 and Disulfide Bond Generating Membrane Protein DsbB.
Solid-State NMR Study of the Charge-Transfer Complex between Ubiquinone-8 and Disulfide Bond Generating Membrane Protein DsbB.
J Am Chem Soc. 2011 Mar 4;
Authors: Tang M, Sperling LJ, Berthold DA, Nesbitt AE, Gennis RB, Rienstra CM
Ubiquinone (Coenzyme Q) plays an important role in the mitochondrial respiratory chain and also acts as an antioxidant in its reduced form, protecting cellular membranes from peroxidation....
nmrlearner
Journal club
0
03-08-2011 01:40 PM
Solid-State NMR Study of the Charge-Transfer Complex between Ubiquinone-8 and Disulfide Bond Generating Membrane Protein DsbB
Solid-State NMR Study of the Charge-Transfer Complex between Ubiquinone-8 and Disulfide Bond Generating Membrane Protein DsbB
Ming Tang, Lindsay J. Sperling, Deborah A. Berthold, Anna E. Nesbitt, Robert B. Gennis and Chad M. Rienstra
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja107775w/aop/images/medium/ja-2010-07775w_0004.gif
Journal of the American Chemical Society
DOI: 10.1021/ja107775w
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/WdFsSgH1V7w
nmrlearner
Journal club
0
03-05-2011 02:44 AM
[NMR paper] A solid-state NMR study of molecular mobility and phase separation in co-spray-dried
A solid-state NMR study of molecular mobility and phase separation in co-spray-dried protein-sugar particles.
Related Articles A solid-state NMR study of molecular mobility and phase separation in co-spray-dried protein-sugar particles.
Eur J Pharm Sci. 2005 May;25(1):105-12
Authors: Suihko EJ, Forbes RT, Apperley DC
Molecular mobility and physical form of co-spray-dried sugar-lysozyme formulations were evaluated. Co-spray-dried trehalose:lysozyme and sucrose:lysozyme formulations in 1:9, 1:1 and 9:1 ratios (w:w) were stored at 0% RH and 75%...
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] 15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of
15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of influenza A virus in hydrated cylindrical lipid bilayers confined to anodic aluminum oxide nanopores.
Related Articles 15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of influenza A virus in hydrated cylindrical lipid bilayers confined to anodic aluminum oxide nanopores.
J Magn Reson. 2005 Apr;173(2):322-7
Authors: Chekmenev EY, Hu J, Gor'kov PL, Brey WW, Cross TA, Ruuge A, Smirnov AI
This communication reports the first...
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] Molecular mobility of protein in lyophilized formulations linked to the molecular mob
Molecular mobility of protein in lyophilized formulations linked to the molecular mobility of polymer excipients, as determined by high resolution 13C solid-state NMR.
Related Articles Molecular mobility of protein in lyophilized formulations linked to the molecular mobility of polymer excipients, as determined by high resolution 13C solid-state NMR.
Pharm Res. 1999 Oct;16(10):1621-5
Authors: Yoshioka S, Aso Y, Kojima S, Sakurai S, Fujiwara T, Akutsu H
PURPOSE: The mobility of protein molecules in lyophilized protein formulations was compared...
nmrlearner
Journal club
0
11-18-2010 08:31 PM
[NMR paper] A solid-state NMR study of protein hydration and stability.
A solid-state NMR study of protein hydration and stability.
Related Articles A solid-state NMR study of protein hydration and stability.
Pharm Res. 1998 Dec;15(12):1816-21
Authors: Separovic F, Lam YH, Ke X, Chan HK
PURPOSE: The mobility of protein in powders at different hydration levels was studied in relation to aggregation and activity. METHODS: Magic angle spinning 13C, 15N, 1H, 2H, and 17O NMR techniques were used to determine changes in the mobility of surface residues in proteins as a function of hydration and related to changes in...
nmrlearner
Journal club
0
11-17-2010 11:15 PM
[NMR paper] Determination of molecular mobility of lyophilized bovine serum albumin and gamma-glo
Determination of molecular mobility of lyophilized bovine serum albumin and gamma-globulin by solid-state 1H NMR and relation to aggregation-susceptibility.
Related Articles Determination of molecular mobility of lyophilized bovine serum albumin and gamma-globulin by solid-state 1H NMR and relation to aggregation-susceptibility.
Pharm Res. 1996 Jun;13(6):926-30
Authors: Yoshioka S, Aso Y, Kojima S
PURPOSE: Feasibility of solid-state 1H NMR for determining the mobility of protein molecules in lyophilized cakes was considered. The mobility in...
nmrlearner
Journal club
0
08-22-2010 02:27 PM
Microsecond Time Scale Mobility in a Solid Protein As Studied by the (15)N R(1rho) Si
Microsecond Time Scale Mobility in a Solid Protein As Studied by the (15)N R(1rho) Site-Specific NMR Relaxation Rates.
Related Articles Microsecond Time Scale Mobility in a Solid Protein As Studied by the (15)N R(1rho) Site-Specific NMR Relaxation Rates.
J Am Chem Soc. 2010 Aug 6;
Authors: Krushelnitsky A, Zinkevich T, Reichert D, Chevelkov V, Reif B
For the first time, we have demonstrated the site-resolved measurement of reliable (i.e., free of interfering effects) (15)N R(1rho) relaxation rates from a solid protein to extract dynamic...