Related ArticlesSolid-State NMR Study of a 41 kDa Membrane Protein Complex DsbA/DsbB.
J Phys Chem B. 2013 Mar 25;
Authors: Sperling LJ, Tang M, Berthold DA, Nesbitt AE, Gennis RB, Rienstra CM
Abstract
The disulfide bond generation system in E. coli is led by a periplasmic protein DsbA and an integral membrane protein DsbB. Here we present a solid-state NMR (SSNMR) study of a 41 kDa membrane protein complex DsbA/DsbB precipitated in the presence of native lipids to investigate conformational changes and dynamics that occur upon transient complex formation within the electron transfer pathway. Chemical shift changes in the periplasmic enzyme DsbA of the three states (wild type, C33S mutant and complex with DsbB) reveal structural and/or dynamic information. We report a 4.9 ppm 15N chemical shift change observed for Pro31 in the active site between the wild type and C33S mutant of DsbA. Additionally, the Pro31 residue remains elusive in the DsbA/DsbB complex, indicating that the dynamics change drastically in the active site between the three states of DsbA. Partial 13C and 15N de novo chemical shift assignments throughout DsbA in the DsbA/DsbB complex using three-dimensional SSNMR spectra were compared with the shifts from DsbA alone to map the site-specific chemical shift perturbations. These results demonstrate that there are further structural and dynamic changes of DsbA in the native membrane observed by SSNMR, which is beyond the differences between the crystal structures of DsbA and the DsbA/DsbB complex.
PMID: 23527473 [PubMed - as supplied by publisher]
Solid-State NMR Study of the Charge-Transfer Complex between Ubiquinone-8 and Disulfide Bond Generating Membrane Protein DsbB.
Solid-State NMR Study of the Charge-Transfer Complex between Ubiquinone-8 and Disulfide Bond Generating Membrane Protein DsbB.
Solid-State NMR Study of the Charge-Transfer Complex between Ubiquinone-8 and Disulfide Bond Generating Membrane Protein DsbB.
J Am Chem Soc. 2011 Mar 4;
Authors: Tang M, Sperling LJ, Berthold DA, Nesbitt AE, Gennis RB, Rienstra CM
Ubiquinone (Coenzyme Q) plays an important role in the mitochondrial respiratory chain and also acts as an antioxidant in its reduced form, protecting cellular membranes from peroxidation....
nmrlearner
Journal club
0
03-08-2011 01:40 PM
Solid-State NMR Study of the Charge-Transfer Complex between Ubiquinone-8 and Disulfide Bond Generating Membrane Protein DsbB
Solid-State NMR Study of the Charge-Transfer Complex between Ubiquinone-8 and Disulfide Bond Generating Membrane Protein DsbB
Ming Tang, Lindsay J. Sperling, Deborah A. Berthold, Anna E. Nesbitt, Robert B. Gennis and Chad M. Rienstra
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja107775w/aop/images/medium/ja-2010-07775w_0004.gif
Journal of the American Chemical Society
DOI: 10.1021/ja107775w
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/WdFsSgH1V7w
nmrlearner
Journal club
0
03-05-2011 02:44 AM
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA.
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA.
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA.
J Am Chem Soc. 2011 Mar 1;
Authors: Renault M, Bos MP, Tommassen J, Baldus M
Multidomain proteins constitute a large part of prokaryotic and eukaryotic proteomes and play fundamental roles in various physiological processes. However, their structural characterization is challenging because of their large size and...
nmrlearner
Journal club
0
03-03-2011 12:34 PM
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA
Marie Renault, Martine P. Bos, Jan Tommassen and Marc Baldus
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja109469c/aop/images/medium/ja-2010-09469c_0004.gif
Journal of the American Chemical Society
DOI: 10.1021/ja109469c
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/9XN1qiW-S-I
nmrlearner
Journal club
0
03-02-2011 02:01 AM
[NMR paper] How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
Related Articles How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
Chembiochem. 2005 Sep;6(9):1693-700
Authors: Lorch M, Faham S, Kaiser C, Weber I, Mason AJ, Bowie JU, Glaubitz C
Several studies have demonstrated that it is viable to use microcrystalline preparations of water-soluble proteins as...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Membrane protein structure determination using solid-state NMR.
Membrane protein structure determination using solid-state NMR.
Related Articles Membrane protein structure determination using solid-state NMR.
Methods Mol Biol. 2004;278:403-73
Authors: Watts A, Straus SK, Grage SL, Kamihira M, Lam YH, Zhao X
Solid-state NMR is emerging as a method for resolving structural information for large biomolecular complexes, such as membrane-embedded proteins. In principle, there is no molecular weight limit to the use of the approach, although the complexity and volume of data is still outside complete assignment...
nmrlearner
Journal club
0
11-24-2010 09:25 PM
[NMR paper] Membrane protein structure determination by solid state NMR.
Membrane protein structure determination by solid state NMR.
Related Articles Membrane protein structure determination by solid state NMR.
Nat Prod Rep. 1999 Aug;16(4):419-23
Authors: Watts A, Burnett IJ, Glaubitz C, Gröbner G, Middleton DA, Spooner PJ, Watts JA, Williamson PT
nmrlearner
Journal club
0
11-18-2010 08:31 PM
Ligand-membrane protein binding by solid-state NMR
Selective Interface Detection: Mapping Binding Site Contacts in Membrane Proteins by NMR Spectroscopy
Suzanne R. Kiihne, Alain F. L. Creemers, Willem J. de Grip, Petra H. M. Bovee-Geurts, Johan Lugtenburg, and Huub J. M. de Groot
J. Am. Chem. Soc.; 2005; 127(16) pp 5734 - 5735
ABSTRACT:
Intermolecular contact surfaces are important regions where specific interactions mediate biological function. We introduce a new magic angle spinning solid state NMR technique, dubbed "selective interface detection spectroscopy" (SIDY). In this technique, 13C-attached protons (1Hlig) are dephased by...