BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-17-2010, 11:06 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Solid-state NMR studies of proteins: the view from static 2H NMR experiments.

Solid-state NMR studies of proteins: the view from static 2H NMR experiments.

Related Articles Solid-state NMR studies of proteins: the view from static 2H NMR experiments.

Biochem Cell Biol. 1998;76(2-3):411-22

Authors: Siminovitch DJ

The application of solid-state 2H NMR spectroscopy to the study of protein and peptide structure and dynamics is reviewed. The advantages of solid-state NMR for the study of proteins are considered, and the particular advantages of solid-state 2H NMR are summarized. Examples of work on the integral membrane protein bacteriorhodopsin, and the membrane peptide gramicidin, are used to highlight the major achievements of the 2H NMR technique. These examples demonstrate that through the use of oriented samples, it is possible to obtain both structural and dynamic information simultaneously.

PMID: 9923710 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Three-dimensional deuterium-carbon correlation experiments for high-resolution solid-state MAS NMR spectroscopy of large proteins
Three-dimensional deuterium-carbon correlation experiments for high-resolution solid-state MAS NMR spectroscopy of large proteins Abstract Well-resolved 2Hâ??13C correlation spectra, reminiscent of 1Hâ??13C correlations, are obtained for perdeuterated ubiquitin and for perdeuterated outer-membrane protein G (OmpG) from E. coli by exploiting the favorable lifetime of 2H double-quantum (DQ) states. Sufficient signal-to-noise was achieved due to the short deuterium T 1, allowing for high repetition rates and enabling 3D experiments with a 2Hâ??13C transfer step in a reasonable time....
nmrlearner Journal club 0 11-01-2011 01:52 AM
Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers
Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers Abstract Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring 1H-15N dipolar couplings (DC) and 15N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal...
nmrlearner Journal club 0 10-10-2011 06:27 AM
[NMR paper] Solid-state 17O NMR as a probe for structural studies of proteins in biomembranes.
Solid-state 17O NMR as a probe for structural studies of proteins in biomembranes. Related Articles Solid-state 17O NMR as a probe for structural studies of proteins in biomembranes. J Am Chem Soc. 2004 Dec 1;126(47):15320-1 Authors: Lemaître V, de Planque MR, Howes AP, Smith ME, Dupree R, Watts A We report the first example of 17O NMR spectra from a selectively labeled transmembrane peptide, 17O--WALP23, as a lyophilized powder and incorporated in hydrated phospholipid vesicles. It is shown that at high magnetic field it is feasible to apply...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] Low temperature solid-state NMR experiments of half-integer quadrupolar nuclides: cav
Low temperature solid-state NMR experiments of half-integer quadrupolar nuclides: caveats and data analysis. Related Articles Low temperature solid-state NMR experiments of half-integer quadrupolar nuclides: caveats and data analysis. J Magn Reson. 2004 May;168(1):66-74 Authors: Lipton AS, Heck RW, Sears JA, Ellis PD Solid-state NMR spectroscopy of half-integer quadrupolar nuclides has received a lot of interest recently with the advent of new methodologies and higher magnetic fields. We present here the extension of our previous low...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Site-directed 13C solid-state NMR studies on membrane proteins: strategy and goals to
Site-directed 13C solid-state NMR studies on membrane proteins: strategy and goals toward revealing conformation and dynamics as illustrated for bacteriorhodopsin labeled with amino acid residues. Related Articles Site-directed 13C solid-state NMR studies on membrane proteins: strategy and goals toward revealing conformation and dynamics as illustrated for bacteriorhodopsin labeled with amino acid residues. Magn Reson Chem. 2004 Feb;42(2):218-30 Authors: Saitô H, Mikami J, Yamaguchi S, Tanio M, Kira A, Arakawa T, Yamamoto K, Tuzi S We have so...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Solid-state NMR studies of the structure and mechanisms of proteins.
Solid-state NMR studies of the structure and mechanisms of proteins. Related Articles Solid-state NMR studies of the structure and mechanisms of proteins. Curr Opin Struct Biol. 2002 Oct;12(5):661-9 Authors: Thompson LK Magic-angle spinning solid-state NMR experiments are well suited to investigating the structures and mechanisms of important proteins that are inaccessible to X-ray crystallography and solution NMR spectroscopy, including membrane proteins and disease-related protein aggregates. Good progress has been made in the development...
nmrlearner Journal club 0 11-24-2010 08:58 PM
Dynamic nuclear polarization experiments at 14.1 T for solid-state NMR.
Dynamic nuclear polarization experiments at 14.1 T for solid-state NMR. Related Articles Dynamic nuclear polarization experiments at 14.1 T for solid-state NMR. Phys Chem Chem Phys. 2010 Jun 14;12(22):5799-803 Authors: Matsuki Y, Takahashi H, Ueda K, Idehara T, Ogawa I, Toda M, Akutsu H, Fujiwara T Instrumentation for high-field dynamic nuclear polarization (DNP) at 14.1 T was developed to enhance the nuclear polarization for NMR of solids. The gyrotron generated 394.5 GHz submillimeter (sub-mm) wave with a power of 40 W in the second harmonic...
nmrlearner Journal club 0 08-26-2010 04:41 PM
Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins
Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins W. Trent Franks, Kathryn D. Kloepper, Benjamin J. Wylie and Chad M. Rienstra Journal of Biomolecular NMR; 2007; 39(2); pp 107 - 131 Abstract: Chemical shift assignment is the first step in all established protocols for structure determination of uniformly labeled proteins by NMR. The explosive growth in recent years of magic-angle spinning (MAS) solid-state NMR (SSNMR) applications is largely attributable to improved methods for backbone and side-chain chemical shift correlation...
stewart Journal club 0 08-05-2008 01:33 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:48 AM.


Map