BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-13-2013, 04:26 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Solid-State NMR Studies of Biomineralization Peptides and Proteins.

Solid-State NMR Studies of Biomineralization Peptides and Proteins.

Solid-State NMR Studies of Biomineralization Peptides and Proteins.

Acc Chem Res. 2013 Aug 9;

Authors: Roehrich A, Drobny G

Abstract
Nature has evolved sophisticated strategies for engineering hardtissues through the interaction of proteins, and ultimately cells, with inorganic mineral phases. This process, called biomineralization, is how living organisms transform inorganic materials such as hydroxyapatite, calcite, and silica into highly intricate and organized structures. The remarkable material properties of shell, bone, and teeth come from the activities of proteins that function at the organic-inorganic interface. A better understanding of the biomolecular mechanisms used to promote or retard the formation of mineral-based structures could provide important design principles for the development of calcification inhibitors and promoters in orthopedics, cardiology, urology, and dentistry. With the knowledge of the structural basis for control of hard tissue growth by proteins, scientists could potentially develop materials using biomimetic principles with applications in catalysis, biosensors, electronic devices, and chromatographic separations, to name a few. Additionally, biomineralization also has potential applications in electronics, catalysis, magnetism, sensory devices, and mechanical design. Where man-made hard materials require the use of extreme temperatures, high pressure, and pH, biological organisms can accomplish these feats at ambient temperature and at physiological pH. Despite the fact that many researchers want to identify and control the structure of proteins at material and biomineral interfaces, there is a decided lack of molecular-level structure information available for proteins at biomaterial interfaces in general. In particular, this holds for mammalian proteins that directly control calcification processes in hard tissue. The most fundamental questions regarding the secondary and tertiary structures of proteins adsorbed to material surfaces, how proteins catalyze the formation of biomineral composites, or how proteins interact at biomaterial interfaces remain unanswered. This is largely due to a lack of methods capable of providing high-resolution structural information for proteins adsorbed to material surfaces under physiologically relevant conditions. In this Account, we highlight recent work that is providing insight into the structure and crystal recognition mechanisms of a salivary protein model system, as well as the structure and interactions of a peptide that catalyzes the formation of biosilica composites. To develop a better understanding of the structure and interactions of proteins in biomaterials, we have used solid-state NMR techniques to determine the molecular structure and dynamics of proteins and peptides adsorbed onto inorganic crystal surfaces and embedded within biomineral composites. This work adds to the understanding of the structure and crystal recognition mechanisms of an acidic human salivary phosphoprotein, statherin.


PMID: 23932180 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Applications of NMR Crystallography to Problems in Biomineralization: Refinement of the Crystal Structure and 31P Solid-State NMR Spectral Assignment of Octacalcium Phosphate
Applications of NMR Crystallography to Problems in Biomineralization: Refinement of the Crystal Structure and 31P Solid-State NMR Spectral Assignment of Octacalcium Phosphate Erika Davies, Melinda J. Duer, Sharon E. Ashbrook and John M. Griffin http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja3017544/aop/images/medium/ja-2012-017544_0009.gif Journal of the American Chemical Society DOI: 10.1021/ja3017544 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/S1bxaQtphuA
nmrlearner Journal club 0 07-24-2012 08:19 AM
Solution and Solid-State NMR Structural Studies of Antimicrobial Peptides LPcin-I and LPcin-II.
Solution and Solid-State NMR Structural Studies of Antimicrobial Peptides LPcin-I and LPcin-II. Solution and Solid-State NMR Structural Studies of Antimicrobial Peptides LPcin-I and LPcin-II. Biophys J. 2011 Sep 7;101(5):1193-201 Authors: Park TJ, Kim JS, Ahn HC, Kim Y Abstract Lactophoricin (LPcin-I) is an antimicrobial, amphiphatic, cationic peptide with 23-amino acid residues isolated from bovine milk. Its analogous peptide, LPcin-II, lacks six N-terminal amino acids compared to LPcin-I. Interestingly, LPcin-II does not display any...
nmrlearner Journal club 0 09-06-2011 06:02 PM
Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR.
Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR. Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR. Protein Sci. 2011 Feb 22; Authors: Hong M, Su Y Many membrane peptides and protein domains contain functionally important cationic Arg and Lys residues, whose insertion into the hydrophobic interior of the lipid bilayer encounters significant energy barriers. To understand how these cationic molecules overcome the free energy barrier to insert into the...
nmrlearner Journal club 0 02-24-2011 11:04 AM
Long-Term-Stable Ether-Lipid vs Conventional Ester-Lipid Bicelles in Oriented Solid-State NMR: Altered Structural Information in Studies of Antimicrobial Peptides.
Long-Term-Stable Ether-Lipid vs Conventional Ester-Lipid Bicelles in Oriented Solid-State NMR: Altered Structural Information in Studies of Antimicrobial Peptides. Long-Term-Stable Ether-Lipid vs Conventional Ester-Lipid Bicelles in Oriented Solid-State NMR: Altered Structural Information in Studies of Antimicrobial Peptides. J Phys Chem B. 2011 Feb 10; Authors: Bertelsen K, Vad B, Nielsen EH, Hansen SK, Skrydstrup T, Otzen DE, Vosegaard T, Nielsen NC Recently, ether lipids have been introduced as long-term stable alternatives to the more natural,...
nmrlearner Journal club 0 02-12-2011 05:26 PM
[NMR paper] Solid-state NMR studies of the structure and mechanisms of proteins.
Solid-state NMR studies of the structure and mechanisms of proteins. Related Articles Solid-state NMR studies of the structure and mechanisms of proteins. Curr Opin Struct Biol. 2002 Oct;12(5):661-9 Authors: Thompson LK Magic-angle spinning solid-state NMR experiments are well suited to investigating the structures and mechanisms of important proteins that are inaccessible to X-ray crystallography and solution NMR spectroscopy, including membrane proteins and disease-related protein aggregates. Good progress has been made in the development...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[Structural studies on transmembrane peptides in lipid bilayers using solid state NMR
Related Articles Seikagaku. 2010 Jun;82(6):498-504 Authors: Sato T, Aimoto S PMID: 20662258
nmrlearner Journal club 0 10-12-2010 02:52 PM
[NMR thesis] NMR and computational studies on the conformational folding of the biomineralization
NMR and computational studies on the conformational folding of the biomineralization template, phosphophoryn Evans, John Spencer (1993) NMR and computational studies on the conformational folding of the biomineralization template, phosphophoryn. Dissertation (Ph.D.), California Institute of Technology. http://resolver.caltech.edu/CaltechTHESIS:10212009-152426877 More...
nmrlearner NMR theses 0 08-27-2010 01:45 AM
Solid State NMR of membrane peptides and proteins
Solid State NMR of membrane peptides and proteins Lecture notes on "Solid State NMR of membrane peptides and proteins" by Dr. SK Straus from Univ. of British Columbia More...
nmrlearner General 0 08-16-2010 03:50 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:20 AM.


Map