Related ArticlesSolid-state NMR of plant and fungal cell walls: A critical review.
Solid State Nucl Magn Reson. 2020 Mar 26;107:101660
Authors: Zhao W, Fernando LD, Kirui A, Deligey F, Wang T
Abstract
The cell walls of plants and microbes are a central source for bio-renewable energy and the major targets of antibiotics and antifungal agents. It is highly challenging to determine the molecular structure of complex carbohydrates, protein and lignin, and their supramolecular assembly in intact cell walls. This article selectively highlights the recent breakthroughs that employ 13C/15N solid-state NMR techniques to elucidate the architecture of fungal cell walls in Aspergillus fumigatus and the primary and secondary cell walls in a large variety of plant species such as Arabidopsis, Brachypodium, maize, and spruce. Built upon these pioneering studies, we further summarize the underexplored aspects of fungal and plant cell walls. The new research opportunities introduced by innovative methods, such as the detection of proton and quadrupolar nuclei on ultrahigh-field magnets and under fast magic-angle spinning, paramagnetic probes, natural-abundance DNP, and software development, are also critically discussed.
PMID: 32251983 [PubMed - as supplied by publisher]
Fast MAS 1 Hâ?? 13 C correlation NMR for structural investigations of plant cell walls
Fast MAS 1 Hâ?? 13 C correlation NMR for structural investigations of plant cell walls
Abstract
Plant cell walls consist of a mixture of polysaccharides that render the cell wall a strong and dynamic material. Understanding the molecular structure and dynamics of wall polysaccharides is important for understanding and improving the properties of this energy-rich biomaterial. So far, solid-state NMR studies of cell wall structure and dynamics have solely relied on 13C chemical shifts measured from 2D and 3D correlation experiments. To increase the...
nmrlearner
Journal club
0
02-29-2020 09:52 PM
[NMR paper] Effects of Pectin Molecular Weight Changes on the Structure, Dynamics, and Polysaccharide Interactions of Primary Cell Walls of Arabidopsis thaliana: Insights from Solid-State NMR.
Effects of Pectin Molecular Weight Changes on the Structure, Dynamics, and Polysaccharide Interactions of Primary Cell Walls of Arabidopsis thaliana: Insights from Solid-State NMR.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Effects of Pectin Molecular Weight Changes on the Structure, Dynamics, and Polysaccharide Interactions of Primary Cell Walls of Arabidopsis thaliana: Insights from Solid-State NMR.
Biomacromolecules. 2017 Sep 11;18(9):2937-2950
Authors: Phyo P,...
nmrlearner
Journal club
0
05-04-2018 03:33 PM
Multidimensional solid-state NMR spectroscopy of plant cell walls #DNPNMR
From The DNP-NMR Blog:
Multidimensional solid-state NMR spectroscopy of plant cell walls #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Wang, T., P. Phyo, and M. Hong, Multidimensional solid-state NMR spectroscopy of plant cell walls. Solid State Nuclear Magnetic Resonance, 2016. 78: p. 56-63.
http://www.sciencedirect.com/science/article/pii/S0926204016300595
nmrlearner
News from NMR blogs
0
11-19-2016 08:35 PM
[NMR paper] Multidimensional solid-state NMR spectroscopy of plant cell walls.
Multidimensional solid-state NMR spectroscopy of plant cell walls.
Multidimensional solid-state NMR spectroscopy of plant cell walls.
Solid State Nucl Magn Reson. 2016 Aug 13;78:56-63
Authors: Wang T, Phyo P, Hong M
Abstract
Plant biomass has become an important source of bio-renewable energy in modern society. The molecular structure of plant cell walls is difficult to characterize by most atomic-resolution techniques due to the insoluble and disordered nature of the cell wall. Solid-state NMR (SSNMR) spectroscopy is uniquely...
nmrlearner
Journal club
0
08-24-2016 04:39 PM
[NMR paper] Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.
Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.
Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.
Biomacromolecules. 2016 May 18;
Authors: Wang T, Yang H, Kubicki JD, Hong M
Abstract
The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron...
nmrlearner
Journal club
0
05-19-2016 10:13 AM
Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls
From The DNP-NMR Blog:
Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls
Wang, T., et al., Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls. Proc Natl Acad Sci U S A, 2013. 110(41): p. 16444-9.
http://www.ncbi.nlm.nih.gov/pubmed/24065828
nmrlearner
News from NMR blogs
0
11-26-2013 01:19 AM
New technology helps researchers discover how plant cell walls grow - Iowa State Daily
<img alt="" height="1" width="1" />
New technology helps researchers discover how plant cell walls grow
Iowa State Daily
"We came upon the idea of using this new, enhanced method that she knew about, a sensitivity-enhanced method for nuclear magnetic resonance analysis, with some of our proteins that loosened cell walls," Cosgrove said. The focus of the experiment was ...
New technology helps researchers discover how plant cell walls grow - Iowa State Daily
More...
nmrlearner
Online News
0
10-08-2013 02:04 PM
[NMR paper] Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls.
Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls.
Related Articles Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls.
Proc Natl Acad Sci U S A. 2013 Sep 24;
Authors: Wang T, Park YB, Caporini MA, Rosay M, Zhong L, Cosgrove DJ, Hong M
Abstract
Structure determination of protein binding to noncrystalline macromolecular assemblies such as plant cell walls (CWs) poses a significant structural biology challenge. CWs are loosened during growth by expansin proteins,...