Abstract
Why apply solid-state NMR (SSNMR) to flavins and flavoproteins? NMR provides information on an atom-specific basis about chemical functionality, structure, proximity to other groups, and dynamics of the system. Thus, it has become indispensable to the study of chemicals, materials, catalysts, and biomolecules. It is no surprise then that NMR has a great deal to offer in the study of flavins and flavoenzymes. In general, their catalytic or electron-transfer activity resides essentially in the flavin, a molecule eminently accessible by NMR. However, the specific reactivity displayed depends on a host of subtle interactions whereby the protein biases and reshapes the flavin's propensities to activate it for one reaction while suppressing other aspects of this cofactor's prodigious repertoire (Massey et al., J Biol Chem 244:3999-4006, 1969; Müller, Z Naturforsch 27B:1023-1026, 1972; Joosten and van Berkel, Curr Opin Struct Biol 11:195-202, 2007). Thus, we are fascinated to learn about how the flavin cofactor of one enzyme is, and is not, like the flavin cofactor of another. In what follows, we describe how the capabilities of SSNMR can help and are beginning to bear fruit in this exciting endeavor.
[NMR paper] Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel ? sheet fusion peptide structure in the final six-helix bundle state.
Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel ? sheet fusion peptide structure in the final six-helix bundle state.
Related Articles Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel ? sheet fusion peptide structure in the final six-helix bundle state.
J Mol Biol. 2013 Nov 15;
Authors: Sackett K, Nethercott MJ, Zheng Z, Weliky DP
Abstract
The HIV gp41 protein catalyzes fusion between viral and target cell membranes. Although...
nmrlearner
Journal club
0
11-20-2013 12:52 PM
Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel ? sheet fusion peptide structure in the final six-helix bundle state
Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel ? sheet fusion peptide structure in the final six-helix bundle state
Publication date: Available online 16 November 2013
Source:Journal of Molecular Biology</br>
Author(s): Kelly Sackett , Matthew J. Nethercott , Zhaoxiong Zheng , David P. Weliky</br>
The HIV gp41 protein catalyzes fusion between viral and target cell membranes. Although the ~20-residue N-terminal fusion peptide (FP) region is critical for fusion, the structure of this region is not...
nmrlearner
Journal club
0
11-16-2013 03:14 PM
The interplay between the solid effect and the cross effect mechanisms in solid state 13C DNP at 95 GHz using trityl radicals
From The DNP-NMR Blog:
The interplay between the solid effect and the cross effect mechanisms in solid state 13C DNP at 95 GHz using trityl radicals
Banerjee, D., et al., The interplay between the solid effect and the cross effect mechanisms in solid state 13C DNP at 95 GHz using trityl radicals. J. Magn. Reson., 2013. 230(0): p. 212-219.
http://dx.doi.org/10.1016/j.jmr.2013.02.010
nmrlearner
News from NMR blogs
0
05-07-2013 12:31 AM
Revealing Protein Structures in Solid-Phase Peptide Synthesis by 13C Solid-State NMR: Evidence of Excessive Misfolding for Alzheimer’s ?
Revealing Protein Structures in Solid-Phase Peptide Synthesis by 13C Solid-State NMR: Evidence of Excessive Misfolding for Alzheimer’s ?
Songlin Wang and Yoshitaka Ishii
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja212190z/aop/images/medium/ja-2011-12190z_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja212190z
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/6EE7uthrnLg
[NMR paper] Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel
Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers.
Related Articles Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers.
Protein Sci. 1998 Feb;7(2):342-8
Authors: Kim Y, Valentine K, Opella SJ, Schendel SL, Cramer WA
The colicin E1 channel polypeptide was shown to be organized anisotropically in membranes by solid-state NMR analysis of samples of uniformly 15N-labeled protein in oriented planar phospholipid bilayers. The 190...
nmrlearner
Journal club
0
11-17-2010 11:06 PM
[NMR paper] 19F NMR studies on 8-fluoroflavins and 8-fluoro flavoproteins.
19F NMR studies on 8-fluoroflavins and 8-fluoro flavoproteins.
Related Articles 19F NMR studies on 8-fluoroflavins and 8-fluoro flavoproteins.
Biochemistry. 1990 Mar 20;29(11):2670-9
Authors: Macheroux P, Kojiro CL, Schopfer LM, Chakraborty S, Massey V
The 19F NMR spectra of the oxidized and reduced forms of 8-fluororiboflavin, 8-fluoro-FAD, and the 8-fluoroflavin-reconstituted flavoproteins flavodoxin, riboflavin binding protein, D-amino acid oxidase, p-hydroxybenzoate hydroxylase, Old Yellow Enzyme, anthranilate hydroxylase, general acyl-CoA...