April 2012
Publication year: 2012 Source:European Journal of Cell Biology, Volume 91, Issue 4
Structural biology is developing into a universal tool for visualizing biological processes in space and time at atomic resolution. The field has been built by established methodology like X-ray crystallography, electron microscopy and solution NMR and is now incorporating new techniques, such as small-angle X-ray scattering, electron tomography, magic-angle-spinning solid-state NMR and femtosecond X-ray protein nanocrystallography. These new techniques all seek to investigate non-crystalline, native-like biological material. Solid-state NMR is a relatively young technique that has just proven its capabilities for de novo structure determination of model proteins. Further developments promise great potential for investigations on functional biological systems such as membrane-integrated receptors and channels, and macromolecular complexes attached to cytoskeletal proteins. Here, we review the development and applications of solid-state NMR from the first proof-of-principle investigations to mature structure determination projects, including membrane proteins. We describe the development of the methodology by looking at examples in detail and provide an outlook towards future ‘big’ projects.
3D DUMAS: Simultaneous acquisition of three-dimensional magic angle spinning solid-state NMR experiments of proteins
3D DUMAS: Simultaneous acquisition of three-dimensional magic angle spinning solid-state NMR experiments of proteins
July 2012
Publication year: 2012
Source:Journal of Magnetic Resonance, Volume 220</br>
</br>
Using the DUMAS (Dual acquisition Magic Angle Spinning) solid-state NMR approach, we created new pulse schemes that enable the simultaneous acquisition of three dimensional (3D) experiments on uniformly 13C, 15N labeled proteins. These new experiments exploit the simultaneous cross-polarization (SIM-CP) from 1H to 13C and 15N to acquire two 3D experiments...
nmrlearner
Journal club
0
02-03-2013 10:13 AM
3D DUMAS: Simultaneous Acquisition of Three-Dimensional Magic Angle Spinning Solid-State NMR Experiments of Proteins
3D DUMAS: Simultaneous Acquisition of Three-Dimensional Magic Angle Spinning Solid-State NMR Experiments of Proteins
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
T. Gopinath, Gianluigi Veglia</br>
Using the DUMAS (Dual acquisition Magic Angle Spinning) solid-state NMR approach, we created new pulse schemes that enable the simultaneous acquisition of three dimensional (3D) experiments on uniformly 13C, 15N labeled proteins. These new experiments exploit the simultaneous cross-polarization (SIM-CP) from 1H to 13C and 15N to acquire two 3D experiments...
Structure and Interactions of Plant Cell-Wall Polysaccharides by Two- and Three-Dimensional Magic-Angle-Spinning Solid-State NMR
Structure and Interactions of Plant Cell-Wall Polysaccharides by Two- and Three-Dimensional Magic-Angle-Spinning Solid-State NMR
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi101795q/aop/images/medium/bi-2010-01795q_0008.gif
Biochemistry
DOI: 10.1021/bi101795q
http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/bichaw/~4/9XLFFfb1pRU
More...
nmrlearner
Journal club
0
01-21-2011 03:31 AM
[NMR paper] Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
Related Articles Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
J Am Chem Soc. 2005 Sep 21;127(37):12965-74
Authors: Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M
It is shown that molecular structure and dynamics of a uniformly labeled membrane protein can be studied under magic-angle-spinning conditions. For this purpose, dipolar recoupling experiments...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Solid-state magic-angle spinning NMR of outer-membrane protein G from Escherichia coli.
Solid-state magic-angle spinning NMR of outer-membrane protein G from Escherichia coli.
Related Articles Solid-state magic-angle spinning NMR of outer-membrane protein G from Escherichia coli.
Chembiochem. 2005 Sep;6(9):1679-84
Authors: Hiller M, Krabben L, Vinothkumar KR, Castellani F, van Rossum BJ, Kühlbrandt W, Oschkinat H
Uniformly 13C-,15N-labelled outer-membrane protein G (OmpG) from Escherichia coli was expressed for structural studies by solid-state magic-angle spinning (MAS) NMR. Inclusion bodies of the recombinant, labelled protein...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Magic angle spinning solid-state NMR spectroscopy for structural studies of protein i
Magic angle spinning solid-state NMR spectroscopy for structural studies of protein interfaces. resonance assignments of differentially enriched Escherichia coli thioredoxin reassembled by fragment complementation.
Related Articles Magic angle spinning solid-state NMR spectroscopy for structural studies of protein interfaces. resonance assignments of differentially enriched Escherichia coli thioredoxin reassembled by fragment complementation.
J Am Chem Soc. 2004 Dec 22;126(50):16608-20
Authors: Marulanda D, Tasayco ML, McDermott A, Cataldi M, Arriaran V,...
nmrlearner
Journal club
0
11-24-2010 10:03 PM
[NMR paper] Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscop
Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy.
Related Articles Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy.
Nature. 2002 Nov 7;420(6911):98-102
Authors: Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H
The determination of a representative set of protein structures is a chief aim in structural genomics. Solid-state NMR may have a crucial role in structural investigations of those proteins that do not easily form crystals or are not...