BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 09-29-2015, 09:03 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,733
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Solid state field-cycling NMR relaxometry: instrumental improvements and new applications.

Solid state field-cycling NMR relaxometry: instrumental improvements and new applications.

Related Articles Solid state field-cycling NMR relaxometry: instrumental improvements and new applications.

Prog Nucl Magn Reson Spectrosc. 2014 Oct;82:39-69

Authors: Fujara F, Kruk D, Privalov AF

Abstract
The paper reviews recent progress in field cycling (FC) NMR instrumentation and its application to solid state physics. Special emphasis is put on our own work during the last 15years on instrumentation, theory and applications. As far as instrumentation is concerned we report on our development of two types of electronical FC relaxometers, a mechanical FC relaxometer and a combination of FC and one-dimensional microimaging. Progress has been achieved with respect to several parameters such as the accessible field and temperature range as well as the incorporation of sample spinning. Since an appropriate analysis of FC data requires a careful consideration of relaxation theory, we include a theory section discussing the most relevant aspects of relaxation in solids which are related to residual dipolar and quadrupolar interactions. The most important limitations of relaxation theory are also discussed. With improved instrumentation and with the help of relaxation theory we get access to interesting new applications such as ionic motion in solid electrolytes, structure determination in molecular crystals, ultraslow polymer dynamics and rotational resonance phenomena.


PMID: 25444698 [PubMed - indexed for MEDLINE]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] New applications and perspectives of fast field cycling NMR relaxometry.
New applications and perspectives of fast field cycling NMR relaxometry. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary_FullTextOnline_120x27.gif Related Articles New applications and perspectives of fast field cycling NMR relaxometry. Magn Reson Chem. 2015 Apr 9; Authors: Steele RM, Korb JP, Ferrante G, Bubici S Abstract The field cycling NMR relaxometry method (also known as fast field cycling (FFC) when instruments employing fast electrical switching of...
nmrlearner Journal club 0 04-11-2015 12:04 AM
Fast-field-cycling relaxometry enhanced by Dynamic Nuclear Polarization
From The DNP-NMR Blog: Fast-field-cycling relaxometry enhanced by Dynamic Nuclear Polarization Neudert, O., et al., Fast-field-cycling relaxometry enhanced by Dynamic Nuclear Polarization. Microporous and Mesoporous Materials, 2015. 205(0): p. 70-74. http://www.sciencedirect.com/science/article/pii/S1387181114003941
nmrlearner News from NMR blogs 0 04-06-2015 02:58 PM
Solid State Field-Cycling NMR Relaxometry: Instrumental Improvements and New Applications
From The DNP-NMR Blog: Solid State Field-Cycling NMR Relaxometry: Instrumental Improvements and New Applications Fujara, F., D. Kruk, and A.F. Privalov, Solid State Field-Cycling NMR Relaxometry: Instrumental Improvements and New Applications. Prog. NMR. Spec., (0). http://dx.doi.org/10.1016/j.pnmrs.2014.08.002
nmrlearner News from NMR blogs 0 10-11-2014 02:31 AM
Solid State Field-Cycling NMR Relaxometry: Instrumental Improvements and New Applications
Solid State Field-Cycling NMR Relaxometry: Instrumental Improvements and New Applications Publication date: Available online 28 September 2014 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Author(s): Franz Fujara , Danuta Kruk , Alexei F. Privalov</br> The paper reviews recent progress in field cycling (FC) NMR instrumentation and its application to solid state physics. Special emphasis is put on our own work during the last 15 years on instrumentation, theory and applications. As far as instrumentation is concerned we report on our development...
nmrlearner Journal club 0 09-29-2014 09:33 AM
Field-cycling NMR relaxometry of viscous liquids and polymers
Field-cycling NMR relaxometry of viscous liquids and polymers May 2012 Publication year: 2012 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 63</br> </br> Graphical abstract
nmrlearner Journal club 0 12-15-2012 09:51 AM
Field-cycling NMR relaxometry of viscous liquids and polymers
Field-cycling NMR relaxometry of viscous liquids and polymers May 2012 Publication year: 2012 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 63</br> </br> Graphical abstract
nmrlearner Journal club 0 12-01-2012 06:10 PM
Field-cycling NMR relaxometry of viscous liquids and polymers
Field-cycling NMR relaxometry of viscous liquids and polymers Publication year: 2011 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> D. Kruk, A. Herrmann, E.A. Rössler</br> Graphical Abstract http://ars.sciencedirect.com/content/image/1-s2.0-S0079656511000586-fx1.jpg Graphical abstract Highlights
nmrlearner Journal club 0 03-09-2012 09:16 AM
Field-cycling NMR relaxometry of viscous liquids and polymers
Field-cycling NMR relaxometry of viscous liquids and polymers Publication year: 2011 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 27 August 2011</br> D., Kruk , A., Herrmann , E.A., Rössler</br> Graphical abstract *Graphical abstract:**Highlights:*? NMR relaxometry compared with DQ NMR, dielectric spectroscopy and light scattering ? Applying susceptibility representation and frequency-temperature superposition ? Liquids: Intra- & intermolecular relaxation give rotational & translational correlation times ? Polymers:...
nmrlearner Journal club 0 08-29-2011 06:41 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:31 PM.


Map