Related ArticlesSolid-state 13C-NMR of [(3-13C)Pro]bacteriorhodopsin and [(4-13C)Pro]bacteriorhodopsin: evidence for a flexible segment of the C-terminal tail.
Eur J Biochem. 1996 Feb 1;235(3):526-33
Authors: Engelhard M, Finkler S, Metz G, Siebert F
The configuration of an Xaa-Pro bond can be determined by solid-state magic-angle-sample-spinning (MASS)-13C-NMR spectroscopy since the chemical shifts of C beta and Cgamma of the proline ring are sensitive to the isomerization state of the preceding peptide bond. (3-13C)Pro and (4-13C)Pro have been chemically synthesized; the former by means of an asymmetric synthesis. The 13C-labeled Pro residues were biosynthetically incorporated into bacteriorhodopsin with a yield of 80%. The solid-state-MASS-13C-NMR spectra of [(3-13C)Pro]bacteriorhodopsin and [(4-13C)Pro]bacteriorhodopsin revealed isotropic chemical shifts at 29.8 ppm and 25.5 ppm, respectively. From the chemical-shift values we conclude that all Xaa Pro peptide bonds are in the trans configuration confirming previous results from solution-NMR studies on solubilized bacteriorhodopsin in organic solvents [Deber, M.C., Sorrell, B.J. & Xu, G.Y. (1990) Biochem. Biophys. Res. Commun. 172, 862-869]. Inversion-recovery experiments could differentiate between three classes of Pro residues distinguished by their relaxation time t1. Tentatively, these three distinct groups of Pro residues could be assigned to the helical, the loop, and the C-terminal parts of the protein. The resonances of the two C-terminal Pro could be identified by removing the C-terminus by proteolysis. Although they are separated by only one Glu they occupy different chemical environments and possess different flexibilities. These results indicate that the first part of the C-terminal tail is constrained. Pro238 marks the position where the tail becomes freely mobile. It is proposed that the C-terminus is fixed to the membrane via salt bridges between divalent cations and negative charges of the C-terminus as well as interhelical loops.
Revealing Protein Structures in Solid-Phase Peptide Synthesis by 13C Solid-State NMR: Evidence of Excessive Misfolding for Alzheimer’s ?
Revealing Protein Structures in Solid-Phase Peptide Synthesis by 13C Solid-State NMR: Evidence of Excessive Misfolding for Alzheimer’s ?
Songlin Wang and Yoshitaka Ishii
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja212190z/aop/images/medium/ja-2011-12190z_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja212190z
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/6EE7uthrnLg
[NMR paper] Control of the pump cycle in bacteriorhodopsin: mechanisms elucidated by solid-state
Control of the pump cycle in bacteriorhodopsin: mechanisms elucidated by solid-state NMR of the D85N mutant.
Related Articles Control of the pump cycle in bacteriorhodopsin: mechanisms elucidated by solid-state NMR of the D85N mutant.
Biophys J. 2002 Feb;82(2):1017-29
Authors: Hatcher ME, Hu JG, Belenky M, Verdegem P, Lugtenburg J, Griffin RG, Herzfeld J
By varying the pH, the D85N mutant of bacteriorhodopsin provides models for several photocycle intermediates of the wild-type protein in which D85 is protonated. At pH 10.8, NMR spectra of...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] Early and late M intermediates in the bacteriorhodopsin photocycle: a solid-state NMR
Early and late M intermediates in the bacteriorhodopsin photocycle: a solid-state NMR study.
Related Articles Early and late M intermediates in the bacteriorhodopsin photocycle: a solid-state NMR study.
Biochemistry. 1998 Jun 2;37(22):8088-96
Authors: Hu JG, Sun BQ, Bizounok M, Hatcher ME, Lansing JC, Raap J, Verdegem PJ, Lugtenburg J, Griffin RG, Herzfeld J
To enforce vectorial proton transport in bacteriorhodopsin (bR), it is necessary that there be a change in molecular structure between deprotonation and reprotonation of the...
nmrlearner
Journal club
0
11-17-2010 11:06 PM
[NMR paper] Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel
Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers.
Related Articles Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers.
Protein Sci. 1998 Feb;7(2):342-8
Authors: Kim Y, Valentine K, Opella SJ, Schendel SL, Cramer WA
The colicin E1 channel polypeptide was shown to be organized anisotropically in membranes by solid-state NMR analysis of samples of uniformly 15N-labeled protein in oriented planar phospholipid bilayers. The 190...
nmrlearner
Journal club
0
11-17-2010 11:06 PM
[NMR paper] Solid-state 13C and 15N NMR study of the low pH forms of bacteriorhodopsin.
Solid-state 13C and 15N NMR study of the low pH forms of bacteriorhodopsin.
Related Articles Solid-state 13C and 15N NMR study of the low pH forms of bacteriorhodopsin.
Biochemistry. 1990 Jul 24;29(29):6873-83
Authors: de Groot HJ, Smith SO, Courtin J, van den Berg E, Winkel C, Lugtenburg J, Griffin RG, Herzfeld J
The visible absorption of bacteriorhodopsin (bR) is highly sensitive to pH, the maximum shifting from 568 nm (pH 7) to approximately 600 nm (pH 2) and back to 565 nm (pH 0) as the pH is decreased further with HCl. Blue membrane...
nmrlearner
Journal club
0
08-21-2010 11:04 PM
[NMR paper] Solid-state 13C NMR study of tyrosine protonation in dark-adapted bacteriorhodopsin.
Solid-state 13C NMR study of tyrosine protonation in dark-adapted bacteriorhodopsin.
Related Articles Solid-state 13C NMR study of tyrosine protonation in dark-adapted bacteriorhodopsin.
Biochemistry. 1990 Jun 12;29(23):5567-74
Authors: Herzfeld J, Das Gupta SK, Farrar MR, Harbison GS, McDermott AE, Pelletier SL, Raleigh DP, Smith SO, Winkel C, Lugtenburg J
Solid-state 13C MAS NMR spectra were obtained for dark-adapted bacteriorhodopsin (bR) labeled with Tyr. Difference spectra (labeled minus natural abundance) taken at pH values between 2 and...
nmrlearner
Journal club
0
08-21-2010 10:48 PM
[NMR paper] High resolution 13C-solid state NMR of bacteriorhodopsin: assignment of specific aspa
High resolution 13C-solid state NMR of bacteriorhodopsin: assignment of specific aspartic acids and structural implications of single site mutations.
Related Articles High resolution 13C-solid state NMR of bacteriorhodopsin: assignment of specific aspartic acids and structural implications of single site mutations.
Eur Biophys J. 1990;18(1):17-24
Authors: Engelhard M, Hess B, Metz G, Kreutz W, Siebert F, Soppa J, Oesterhelt D
Three mutant strains of Halobacterium sp. GRB with the site of mutation in the bacterioopsin gene (PM 326:...